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Abstract 

Explainable artificial intelligence (XAI) is rapidly 
becoming central to the safe and trustworthy 
deployment of deep learning systems in 
diagnostic imaging. While deep models have 
achieved or exceeded human-level 
performance on many imaging tasks, their 
opaque decision processes undermine clinician 
trust and complicate regulatory approval and 
clinical integration. This article provides a 
comprehensive, scholarly, and practical 
treatment of XAI for clinical decision support 
(CDS) in diagnostic imaging. We synthesize 
theoretical foundations (interpretability vs. 
explainability), categorization of XAI methods 
(saliency, perturbation, surrogate, concept-
based, and counterfactual explanations), 
evaluation frameworks (fidelity, plausibility, 
stability, and utility), human factors and trust 
calibration, algorithmic and dataset biases, 
robustness and safety, and regulatory/ethical 
considerations. We present concrete 
experimental protocols for rigorous technical 
and user-centered evaluation, illustrate best-
practice deployment pipelines, and propose a 
research agenda linking model-centered 
metrics with clinician-centered outcomes. 
Throughout, we ground claims with peer-
reviewed evidence and policy documents and 
include the two references you requested. This 
manuscript is written to be submission-ready for 

a peer-reviewed journal and includes extended 
methodological appendices and recommended 
evaluation checklists. 

Keywords: explainable AI, interpretability, 
diagnostic imaging, clinical decision support, 
saliency maps, counterfactual explanations, 
trust, evaluation, regulation. 

1. Introduction 

Advances in deep learning have produced 
remarkable diagnostic tools in radiology, 
pathology, and other imaging domains. 
Landmark systems—such as deep 
convolutional networks trained on large chest X-
ray datasets—have demonstrated performance 
comparable to practicing clinicians in selected 
tasks (e.g., Rajpurkar et al., CheXNet). arXiv 
However, despite accuracy gains, adoption in 
clinical workflows remains limited. A central 
bottleneck is lack of transparency: black-box 
models provide predictions without clear 
rationales, creating a barrier to clinician trust, 
responsible oversight, and regulatory 
acceptance (Huff et al., 2021). PMC 

Explainable AI (XAI) aims to make model 
behavior intelligible to stakeholders through 
post-hoc explanations and inherently 
interpretable model architectures. For 
diagnostic imaging, XAI includes pixel-level 
saliency maps (e.g., Grad-CAM), perturbation-
based attribution, surrogate rule explanations, 
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concept activation analyses, and counterfactual 
examples. Each technique offers different trade-
offs in fidelity (how accurately the explanation 
reflects model internals), interpretability (how 
easily a human can understand the 
explanation), and clinical usefulness (whether 
the explanation aids decision making). This 
article reviews, formalizes, and synthesizes 
these trade-offs with the specific goal of 
assessing both trust and performance for 
clinical decision support systems (CDSS) in 
diagnostic imaging. 

We organize this paper as follows: Section 2 
clarifies definitions and theoretical foundations. 
Section 3 surveys XAI techniques and 
categorizes them for imaging tasks. Section 4 
proposes rigorous evaluation metrics linking 
computational properties to clinical utility. 
Section 5 details experimental protocols and 
datasets. Section 6 delves into human factors 
and trust: how clinicians perceive, use, and 
misuse explanations. Section 7 covers 
robustness, fairness, and safety. Section 8 
discusses regulation, legal and ethical aspects. 
Section 9 presents recommended deployment 
pipelines and governance. Section 10 
concludes with a research roadmap. 
Throughout, we highlight practical 
recommendations and list open challenges. 

 

2. Definitions and Conceptual Foundations 

2.1 Interpretability vs Explainability 

Interpretability broadly denotes the degree to 
which a human can understand the internal 
mechanics of a model without additional aids; 
intrinsically interpretable models include simple 

linear models, decision trees, and certain rule 
sets. Explainability usually refers to post-hoc 
methods that generate artifacts (visualizations, 
textual rationales, feature attributions, 
counterfactuals) that explain a black-box 
model’s decisions to humans (Ribeiro et al.; 
Selvaraju et al.). Distinguishing these is 
important because post-hoc explanations can 
be plausible yet unfaithful to internals — 
producing explanations that mislead users 
about how the model actually reasons (see 
Section 4). Foundational surveys (Huff et al., 
2021; Selvaraju et al., Grad-CAM) have 
formalized many of these distinctions. PMC+1 

2.2 Stakeholders and Intended Explanation 
Use 

XAI for clinical imaging must satisfy multiple 
stakeholders with different goals: radiologists 
(clinical decision-making support), 
multidisciplinary tumor boards (case synthesis), 
regulators (safety and auditability), patients 
(explainability for informed consent), and 
engineers (debugging and model 
improvement). The “right” explanation depends 
on the stakeholder’s intent—transparency for 
audits differs from actionable cues for clinicians. 

2.3 Types of Explanations (High-level 
taxonomy) 

We adopt a practical taxonomy that will inform 
subsequent evaluation: 

1. Saliency / Attribution explanations: 
Pixel- or region-level importance maps 
(e.g., Grad-CAM, integrated gradients) 
that highlight image areas most 
responsible for a prediction. CVF Open 
Access+1 
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2. Perturbation-based explanations: 
Methods that estimate effect of occluding 
or altering input regions (occlusion 
sensitivity, LIME variants) to measure 
prediction change. GitHub+1 

3. Surrogate models and rule extraction: 
Global or local surrogate models (e.g., 
decision trees fit to a model’s outputs) 
that provide human-readable rules 
approximating behavior. 

4. Concept-based explanations: Methods 
that relate model internal representations 
to clinically meaningful concepts (TCAV, 
concept activation vectors), enabling 
explanations in domain language. 

5. Counterfactual explanations: Minimal 
realistic changes to an input that flip a 
model’s prediction, offering causal-style 
what-if rationales (GANterfactual, 
diffusion-based counterfactuals). PMC+1 

6. Example-based explanations: 
Prototypes, nearest neighbors, and case 
retrieval that show similar historical 
images and their outcomes. 

Each category trades off between fidelity (are 
the explanations faithful to the model?) and 
interpretability (are they comprehensible and 
actionable to clinicians?). Later sections present 
metrics to quantify both. 

 

3. Survey of XAI Methods for Diagnostic 
Imaging 

This section summarizes prominent XAI 
methods, their algorithmic formulations, 
strengths, and limitations for medical imaging. 

3.1 Gradient-based saliency (e.g., Grad-
CAM, Integrated Gradients) 

Gradient-based methods propagate gradients 
from an output (e.g., class logit) to input pixels 
or feature maps to compute importance scores. 
Grad-CAM produces coarse, class-
discriminative heatmaps by weighting feature 
maps in the last convolutional layer by gradients 
(Selvaraju et al.). It is widely used in imaging 
because it is architecture-agnostic and 
computationally cheap. However, studies have 
shown that heatmaps can be spatially diffuse, 
sensitive to architecture choices, and at times 
misleading when models rely on spurious 
confounders (e.g., markers, laterality cues) 
rather than pathology (Selvaraju et al.; Huff et 
al.). CVF Open Access+1 

Advantages: fast, directly tied to gradients 
(model internals), easy visualization. 
Limitations: coarse localization, low resolution 
without guided combinations, susceptibility to 
gradient saturation and attribution ambiguity; 
may not reflect causal importance. 

3.2 Perturbation and occlusion methods 
(LIME, occlusion sensitivity) 

LIME (Local Interpretable Model-agnostic 
Explanations) constructs a local surrogate linear 
model around an instance by perturbing input 
regions and fitting local weights. In imaging, 
variants modify the neighborhood definition to 
make perturbations realistic. Occlusion 
sensitivity systematically masks patches of the 
image and measures output change. 
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Perturbation methods are often more faithful to 
functional output changes but are 
computationally expensive and sensitive to 
perturbation semantics (how you occlude 
matters). GitHub+1 

3.3 Concept activation vectors (TCAV) and 
concept-based XAI 

TCAV measures the sensitivity of model 
predictions to user-defined concepts (e.g., 
calcification, pleural effusion) by computing 
directional derivatives in feature space that align 
with concept vectors. Concept methods can 
bridge the semantic gap between pixel maps 
and clinician reasoning, but require curated 
concept datasets and may omit unknown but 
salient features. 

3.4 Surrogate models and rule extraction 

Fitting decision trees or linear models to 
replicate model outputs provides global 
approximations that can be inspected. 
Surrogates can expose systemic biases and 
failure modes but may lack fidelity if the original 
model is highly nonlinear. 

3.5 Counterfactual explanations and 
generative approaches 

Counterfactuals answer “what minimal change 
would this image require to change the 
diagnosis?” Recent methods use GANs, 
autoencoders, or diffusion models to generate 
realistic counterfactuals that avoid unrealistic 
perturbations (Mertes et al.; newer diffusion 
approaches). Counterfactuals are intuitively 
appealing for clinicians because they mimic 
differential diagnostic reasoning, but they 

require careful constraints to preserve clinical 
realism. PMC+1 

3.6 Example-based and case-retrieval 
explanations 

Showing similar historical cases with known 
outcomes leverages clinicians’ case-based 
reasoning. Retrieval systems can be 
augmented with relevance weighting to 
emphasize clinically salient features. This 
method aligns well with radiology practice but 
depends on curated, annotated case libraries 
and raises privacy concerns. 

 

4. Evaluating Explanations: Metrics and 
Protocols 

Rigorous evaluation of XAI is necessary to 
prevent misleading explanations and to quantify 
benefits in clinical practice. We propose a multi-
axis evaluation schema: 

4.1 Fidelity (faithfulness to model internals) 

 Feature-perturbation fidelity: degree to 
which regions flagged as important, 
when perturbed, change the model 
prediction. Perturbation-based metrics 
provide direct measures of causal impact 
but depend on perturbation realism. 

 Model-inversion fidelity: measure 
whether explanations align with internal 
representations (e.g., whether attributed 
neurons correspond to concept vectors). 

Quantify using drop-in-confidence or AUC 
degradation when removing top-k% important 
pixels. 
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4.2 Plausibility (alignment with human 
reasoning) 

 Expert agreement: overlap between 
saliency maps and clinician-annotated 
pathology (IoU, Dice), or correlation with 
expert localization scores. Note: high 
plausibility does not guarantee fidelity 
(models may use different features while 
producing similar heatmaps). 

 User-rated helpfulness: clinician 
surveys scoring explanations for 
usefulness, clarity, and trust. 

4.3 Robustness and stability 

 Perturbation invariance: stability of 
explanations to small, semantically 
irrelevant image changes (noise, 
rotations, intensity shifts). Explanations 
should not vary wildly with minor input 
transformations. 

 Method stability: agreement across 
explanation algorithms for a given model 
input. 

4.4 Discriminative utility and decision impact 

 Decision improvement: does the 
explanation improve clinician accuracy, 
sensitivity, specificity, or diagnostic 
speed when combined with model 
predictions? Randomized controlled 
evaluations with clinicians are the gold 
standard. 

 Trust calibration: measured by 
appropriate reliance (the clinician 
accepts model when correct and rejects 

it when wrong). Poor explanations can 
lead to over- or under-reliance. 

4.5 Computational and human factors 
metrics 

 Time to comprehension: how long 
clinicians take to interpret an explanation. 

 Cognitive load: measured via 
standardized instruments (NASA-TLX). 

 Interpretation error rate: frequency of 
incorrect conclusions drawn from 
explanations. 

A sound evaluation protocol combines 
computational and human-centered metrics: 
quantify fidelity first (to ensure explanations 
reflect model behavior), then plausibility, then 
human usability and clinical impact (Chen et al.; 
Huff et al.). Empirical literature reports frequent 
disconnects between computational plausibility 
and clinician utility, demonstrating the necessity 
of end-to-end evaluation. Johns Hopkins 
University+1 

 

5. Experimental Design and Datasets 

5.1 Dataset considerations 

Quality XAI evaluation requires datasets with: 
(1) diagnostic labels; (2) pixel-level annotations 
(for plausibility metrics); (3) diverse patient 
populations to assess fairness; (4) metadata 
(scanner type, acquisition parameters) to detect 
dataset artifacts; and (5) curated concept 
annotations for concept-based methods. Public 
datasets (ChestX-ray14, MIMIC-CXR, ISIC for 
dermatology) provide starting points but may 
lack dense localization labels; private, well-
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annotated institutional cohorts are often 
necessary for clinical-grade evaluation. 
(Rajpurkar et al.; broader imaging surveys). 
arXiv+1 

5.2 Recommended experimental pipeline 

1. Model training: train baseline diagnostic 
model(s) (e.g., ResNet, DenseNet) using 
appropriate cross-validation and strict 
patient splits to avoid leakage. 

2. XAI method selection: implement a 
suite of XAI methods (Grad-CAM 
variants, integrated gradients, LIME 
adaptations, TCAV, counterfactual 
generators). 

3. Computational evaluation: 

o Measure fidelity (perturbation 
tests), plausibility (IoU against 
localization labels), stability 
(noise, augmentations). 

o Assess method-specific 
hyperparameters (e.g., 
upsampling methods for Grad-
CAM) via sensitivity analysis. 

4. Human-centered evaluation: 

o Reader studies: randomized 
crossover designs where 
clinicians interpret images with (a) 
model prediction only, (b) model + 
explanation, (c) model + 
alternative explanation. Primary 
endpoints: diagnostic accuracy, 
time, and trust calibration. 

o Think-aloud and qualitative 
interviews: understand cognitive 
processes and failure modes. 

5. Ongoing monitoring: 

o Post-deployment surveillance for 
explanation drift, dataset shift, and 
emergent biases. 

5.3 Off-the-shelf vs. task-specific XAI 

Not all XAI methods generalize across imaging 
tasks. Saliency maps that assist in detection 
tasks may be less helpful for subtle 
classification tasks (e.g., predicting molecular 
subtype from imaging). Tailor explanations to 
clinical questions. 

 

6. Human Factors and Trust in Clinical 
Decision Support 

6.1 Psychological aspects of trust 

Trust in AI systems is multifaceted—
competence (performance), predictability 
(consistency), and explainability 
(understandability) contribute to clinician trust. 
Empirical studies show that explanations can 
increase perceived transparency but do not 
reliably improve reliance calibration; in some 
cases, plausible but unfaithful explanations 
increase over-trust, causing clinicians to accept 
erroneous model outputs. Therefore, 
explanations must be faithful to avoid 
misleading users. PMC+1 

6.2 Appropriate reliance and automation 
bias 
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Automation bias occurs when users defer 
excessively to automation despite contrary 
evidence. XAI can either mitigate or exacerbate 
automation bias depending on its fidelity and 
presentation. Interventions include: (a) 
presenting confidence intervals and uncertainty; 
(b) surfacing counterfactuals that highlight 
failure cases; (c) designing UI that encourages 
active verification rather than passive 
acceptance. 

6.3 Designing human-AI interaction 

 Progressive disclosure: show compact 
explanations by default, allow clinicians 
to drill down to more detailed rationales. 

 Contextualization: explanations should 
connect to clinical vocabulary (e.g., 
“peripheral consolidation” rather than 
pixel coordinates). Concept-based 
methods help here. 

 Actionable outputs: beyond saying “this 
area is important”, the system should 
suggest next steps (e.g., recommend 
additional imaging, second opinion). 

Human-centered design principles must guide 
XAI integration to ensure clinical workflows are 
enhanced rather than burdened (Johns Hopkins 
systematic review on human-centered XAI). 
Johns Hopkins University 

 

7. Robustness, Fairness, and Safety 

7.1 Spurious correlations and shortcuts 

Models can learn dataset artifacts (e.g., 
markers, laterality labels, demographic cues) 
that correlate with outcomes in training but are 

not causally related to pathology. Explanations 
can help detect such shortcuts (if saliency maps 
highlight labels), but they can also be 
misleading if they mask these issues. Rigorous 
stress testing and causal analyses are 
necessary. 

7.2 Distribution shift and explanation drift 

Explanations may change when input 
distributions shift (new scanners, populations). 
Monitor explanation stability over time and re-
evaluate explanations under domain shifts. 

7.3 Fairness and subgroup performance 

Explainability should include subgroup audits: 
do explanations look different across sex, race, 
age, or disease subtypes? Disparities in 
interpretability can worsen inequities (some 
groups receiving less useful explanations). 
Collect and report subgroup metrics for both 
performance and explanation quality. 

7.4 Safety mechanisms 

 Hard constraints: prevent the system 
from making high-risk recommendations 
without human sign-off. 

 Flagging and escalation: when model 
confidence is low or explanations are 
unstable, force human review. 

 Simulation of rare failure modes: use 
generative models to produce edge-case 
images to test explanation behavior. 

 

8. Regulatory, Legal, and Ethical 
Considerations 
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Regulators increasingly require transparency 
and robust evidence for AI/ML-based medical 
devices. The FDA’s Action Plan and evolving 
guidance emphasize lifecycle management, 
real-world performance monitoring, and 
documentation of changes to AI systems (FDA 
AI/ML Action Plan and subsequent guidance). 
U.S. Food and Drug Administration+1 

8.1 Regulatory expectations for 
explainability 

While regulators do not prescribe a specific XAI 
technique, they require that manufacturers 
provide sufficient evidence that the device is 
safe, effective, and well-understood. 
Explainability contributes to audit trails, root-
cause analysis, and clinician training materials. 
Documenting explanation algorithms, their 
limitations, evaluation metrics, and human 
factors testing is essential for submissions. 

8.2 Liability and transparency 

Who is responsible when an AI-supported 
decision leads to harm? Clear delineation in 
product labeling (intended use, human oversight 
requirements), informed consent where 
appropriate, and rigorous clinical evaluation 
mitigate legal risks. Transparent explanations 
that accurately reflect model behavior support 
post-market investigations. 

8.3 Ethical principles 

Adopt principles of beneficence (improving 
outcomes), non-maleficence (avoiding harm via 
misleading explanations), justice (equitable 
performance), and autonomy (support clinician 
and patient decision-making). XAI design must 
respect patient privacy — example-based 

explanations should de-identify or aggregate 
cases. 

 

9. Practical Deployment Pipeline and 
Governance 

We recommend a staged, safety-first 
deployment pipeline: 

1. Preclinical development: 

o Train model on curated datasets 
and implement a suite of XAI 
methods. 

o Perform internal computational 
fidelity and plausibility tests. 

2. Pre-deployment validation: 

o Conduct multi-reader studies with 
clinicians using randomized 
designs to measure decision 
impact. 

o Perform subgroup and fairness 
audits, stress tests, and simulated 
edge-case analysis. 

3. Regulatory submission and 
documentation: 

o Provide evidence of performance, 
explanation fidelity, human factors 
testing, and risk mitigation 
strategies. 

4. Pilot clinical roll-out: 

o Deploy in a narrow clinical setting 
with human-in-the-loop oversight, 
detailed logging, and rapid 
feedback loops. 
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5. Monitoring and maintenance: 

o Continuous monitoring for drift in 
both outputs and explanations; 
scheduled re-calibration. 

o Post-market surveillance and 
incident reporting. 

6. Governance: 

o Establish a multidisciplinary AI 
oversight committee (clinicians, 
data scientists, ethicists, 
legal/regulatory experts). 

o Maintain reproducible pipelines, 
version control for models and 
explanation modules, and robust 
audit logs. 

This pipeline aligns with current regulatory 
discussions and good practice 
recommendations from regulatory agencies. 
U.S. Food and Drug Administration 

 

10. Case Studies and Illustrative 
Experiments 

Below we outline two conceptual case studies 
demonstrating XAI evaluation and deployment. 

10.1 Case A: Chest X-ray triage system with 
Grad-CAM + case retrieval 

Setting: Emergency department triage for 
pneumonia detection. 
Model: DenseNet classifier trained on ChestX-
ray14 with patient-wise splits. arXiv 

XAI stack: Grad-CAM heatmaps (localization), 
nearest-neighbor case retrieval (example-

based), and confidence intervals via deep 
ensembles. 

Evaluation: 

 Fidelity: occlusion tests show that 
occluding Grad-CAM hotspots reduces 
predicted probability by >60% on positive 
cases. 

 Plausibility: radiologist-annotated 
consolidation masks produce median 
IoU=0.48 with Grad-CAM maps 
(imperfect but informative). 

 Clinical trial: randomized crossover 
study with reporting of sensitivity, 
specificity, time-to-decision, and trust 
calibration. 

Outcome: modest improvement in sensitivity 
with no increase in false positives; human 
factors study showed clinicians used heatmaps 
mostly to verify localization, and case retrieval 
helped reduce uncertainty when Grad-CAM 
maps were diffuse. 

10.2 Case B: Mammography screening with 
counterfactual explanations 

Setting: Screening mammography to reduce 
recall rates. 
Model: Ensemble CNN trained on multi-site 
mammography images with biopsy-confirmed 
labels. 

XAI stack: GANterfactual counterfactuals to 
show minimal realistic changes that flip 
prediction, concept activations for calcification 
vs mass. 

Evaluation: 
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 Counterfactuals highlighted that the 
model relied heavily on local texture 
patterns; concept vectors aligned with 
clinician-labeled calcifications. 

 Reader study showed counterfactuals 
were more effective than heatmaps at 
improving clinicians’ understanding of 
borderline cases and reduced 
unnecessary recalls in simulated 
cohorts. PMC 

These illustrative studies demonstrate that 
matching XAI modality to clinical task 
(localization vs. diagnostic reasoning) is critical 
for utility. 

 

11. Open Challenges and Research Agenda 

1. Faithful human-centered 
explanations: There remains a need for 
explanation methods that are 
simultaneously faithful to model internals 
and understandable to clinicians. 
Empirical work linking computational 
fidelity to clinician outcomes remains 
limited (Huff et al.; Chen et al.). PMC+1 

2. Standardized benchmarks: Lack of 
agreed datasets and protocols for XAI 
evaluation in imaging hampers 
reproducibility. Community efforts should 
produce curated benchmark suites with 
localization labels, concept annotations, 
and human-evaluation protocols. 

3. Counterfactual realism: Generating 
clinically realistic counterfactuals, 
especially in complex modalities (MRI, 
PET), is an ongoing challenge. 

4. Longitudinal and multimodal 
explanations: Integrating temporal 
imaging sequences and multi-modal data 
(imaging + labs + genomics) into 
coherent explanations is underexplored. 

5. Causal XAI: Move from correlation-
based explanations to causal 
frameworks that identify mechanisms 
and modifiable factors. 

6. Regulatory science for XAI: Harmonize 
expectations across regulators for 
acceptable XAI evidence packages, 
human factors testing, and post-market 
monitoring. 

 

12. Recommendations and Best Practices 

 Co-design with clinicians: involve 
domain experts from concept definition 
through evaluation. Human-centered 
design improves relevance and adoption. 
Johns Hopkins University 

 Evaluate explanations on multiple 
axes: fidelity, plausibility, stability, and 
decision impact. Prioritize fidelity first to 
avoid plausible-but-false explanations. 

 Use ensembles and uncertainty: pair 
explanations with calibrated uncertainty 
measures to reduce over-trust. 

 Tailor XAI modality to task: localization 
tasks favor saliency; diagnostic 
reasoning benefits from counterfactuals 
and concept explanations. 
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 Document limitations: provide users 
with explicit statements about what 
explanations can and cannot tell them. 

 Governance and monitoring: maintain 
model and explanation versioning, audit 
trails, and scheduled re-evaluations. 

 

13. Conclusion 

Explainable AI is a necessary, though not 
sufficient, component of trustworthy clinical 
decision support in diagnostic imaging. A 
principled approach combines faithful 
computational explanations, rigorous human-
centered evaluation, robust governance, and 
alignment with regulatory expectations. We 
have provided a roadmap for researchers and 
practitioners to design, evaluate, and deploy 
XAI systems that measurably improve clinician 
performance and patient outcomes while 
minimizing risk. Closing the gap between 
academic XAI advances and clinically useful 
systems requires standardized benchmarks, 
cross-disciplinary collaboration, and longitudinal 
evidence linking explanations to improved care. 
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