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Abstract

Explainable artificial intelligence (XAl) is rapidly
becoming central to the safe and trustworthy
deployment of deep learning systems in
diagnostic imaging. While deep models have
achieved or exceeded human-level
performance on many imaging tasks, their
opaque decision processes undermine clinician
trust and complicate regulatory approval and
clinical integration. This article provides a
comprehensive, scholarly, and practical
treatment of XAl for clinical decision support
(CDS) in diagnostic imaging. We synthesize
theoretical foundations (interpretability vs.
explainability), categorization of XAl methods
(saliency, perturbation, surrogate, concept-
based, and counterfactual explanations),
evaluation frameworks (fidelity, plausibility,
stability, and utility), human factors and trust
calibration, algorithmic and dataset biases,
robustness and safety, and regulatory/ethical
considerations. We present concrete
experimental protocols for rigorous technical
and user-centered evaluation, illustrate best-
practice deployment pipelines, and propose a
research agenda linking model-centered
metrics with clinician-centered outcomes.
Throughout, we ground claims with peer-
reviewed evidence and policy documents and
include the two references you requested. This
manuscript is written to be submission-ready for

a peer-reviewed journal and includes extended
methodological appendices and recommended
evaluation checklists.

Keywords: explainable Al, interpretability,
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1. Introduction

Advances in deep learning have produced
remarkable diagnostic tools in radiology,
pathology, and other imaging domains.
Landmark systems—such as deep
convolutional networks trained on large chest X-
ray datasets—have demonstrated performance
comparable to practicing clinicians in selected
tasks (e.g., Rajpurkar et al., CheXNet). arXiv
However, despite accuracy gains, adoption in
clinical workflows remains limited. A central
bottleneck is lack of transparency: black-box
models provide predictions without clear
rationales, creating a barrier to clinician trust,
responsible  oversight, and regulatory
acceptance (Huff et al., 2021). PMC

Explainable Al (XAl) aims to make model
behavior intelligible to stakeholders through
post-hoc explanations and inherently
interpretable  model  architectures. For
diagnostic imaging, XAl includes pixel-level
saliency maps (e.g., Grad-CAM), perturbation-
based attribution, surrogate rule explanations,
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concept activation analyses, and counterfactual
examples. Each technique offers different trade-
offs in fidelity (how accurately the explanation
reflects model internals), interpretability (how
easily a human can understand the
explanation), and clinical usefulness (whether
the explanation aids decision making). This
article reviews, formalizes, and synthesizes
these trade-offs with the specific goal of
assessing both trust and performance for
clinical decision support systems (CDSS) in
diagnostic imaging.

We organize this paper as follows: Section 2
clarifies definitions and theoretical foundations.
Section 3 surveys XAl techniques and
categorizes them for imaging tasks. Section 4
proposes rigorous evaluation metrics linking
computational properties to clinical utility.
Section 5 details experimental protocols and
datasets. Section 6 delves into human factors
and trust: how clinicians perceive, use, and
misuse explanations. Section 7 covers
robustness, fairness, and safety. Section 8
discusses regulation, legal and ethical aspects.
Section 9 presents recommended deployment

pipelines and governance. Section 10
concludes with a research roadmap.
Throughout, we highlight practical

recommendations and list open challenges.

2. Definitions and Conceptual Foundations
2.1 Interpretability vs Explainability

Interpretability broadly denotes the degree to
which a human can understand the internal
mechanics of a model without additional aids;
intrinsically interpretable models include simple

linear models, decision trees, and certain rule
sets. Explainability usually refers to post-hoc
methods that generate artifacts (visualizations,
textual  rationales, feature  attributions,
counterfactuals) that explain a black-box
model’s decisions to humans (Ribeiro et al.;
Selvaraju et al.). Distinguishing these is
important because post-hoc explanations can
be plausible yet unfaithful to internals —
producing explanations that mislead users
about how the model actually reasons (see
Section 4). Foundational surveys (Huff et al.,
2021; Selvaraju et al., Grad-CAM) have
formalized many of these distinctions. PMC+1

2.2 Stakeholders and Intended Explanation
Use

XAl for clinical imaging must satisfy multiple
stakeholders with different goals: radiologists
(clinical decision-making support),
multidisciplinary tumor boards (case synthesis),
regulators (safety and auditability), patients
(explainability for informed consent), and
engineers (debugging and model
improvement). The “right” explanation depends
on the stakeholder’s intent—transparency for
audits differs from actionable cues for clinicians.

2.3 Types of Explanations (High-level
taxonomy)

We adopt a practical taxonomy that will inform
subsequent evaluation:

1. Saliency / Attribution explanations:
Pixel- or region-level importance maps
(e.g., Grad-CAM, integrated gradients)
that highlight image areas most
responsible for a prediction. CVF Open
Access+1
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2. Perturbation-based explanations:
Methods that estimate effect of occluding
or altering input regions (occlusion
sensitivity, LIME variants) to measure
prediction change. GitHub+1

3. Surrogate models and rule extraction:
Global or local surrogate models (e.g.,
decision trees fit to a model's outputs)
that provide human-readable rules
approximating behavior.

4. Concept-based explanations: Methods
that relate model internal representations
to clinically meaningful concepts (TCAV,
concept activation vectors), enabling
explanations in domain language.

5. Counterfactual explanations: Minimal
realistic changes to an input that flip a
model’s prediction, offering causal-style
what-if rationales (GANterfactual,
diffusion-based counterfactuals). PMC+1

6. Example-based explanations:
Prototypes, nearest neighbors, and case
retrieval that show similar historical
images and their outcomes.

Each category trades off between fidelity (are
the explanations faithful to the model?) and
interpretability (are they comprehensible and
actionable to clinicians?). Later sections present
metrics to quantify both.

3. Survey of XAl Methods for Diagnostic
Imaging

This section summarizes prominent XAl
methods, their algorithmic  formulations,
strengths, and limitations for medical imaging.

3.1 Gradient-based saliency (e.g., Grad-
CAM, Integrated Gradients)

Gradient-based methods propagate gradients
from an output (e.g., class logit) to input pixels
or feature maps to compute importance scores.
Grad-CAM produces coarse, class-
discriminative heatmaps by weighting feature
maps in the last convolutional layer by gradients
(Selvaraju et al.). It is widely used in imaging
because it is architecture-agnostic and
computationally cheap. However, studies have
shown that heatmaps can be spatially diffuse,
sensitive to architecture choices, and at times
misleading when models rely on spurious
confounders (e.g., markers, laterality cues)
rather than pathology (Selvaraju et al.; Huff et
al.). CVF Open Access+1

Advantages: fast, directly tied to gradients
(model internals), easy visualization.
Limitations: coarse localization, low resolution
without guided combinations, susceptibility to
gradient saturation and attribution ambiguity;
may not reflect causal importance.

3.2 Perturbation and occlusion methods
(LIME, occlusion sensitivity)

LIME (Local Interpretable Model-agnostic
Explanations) constructs a local surrogate linear
model around an instance by perturbing input
regions and fitting local weights. In imaging,
variants modify the neighborhood definition to
make  perturbations  realistic.  Occlusion
sensitivity systematically masks patches of the
image and measures output change.
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Perturbation methods are often more faithful to
functional output  changes but are
computationally expensive and sensitive to
perturbation semantics (how you occlude
matters). GitHub+1

3.3 Concept activation vectors (TCAV) and
concept-based XAl

TCAV measures the sensitivity of model
predictions to user-defined concepts (e.g.,
calcification, pleural effusion) by computing
directional derivatives in feature space that align
with concept vectors. Concept methods can
bridge the semantic gap between pixel maps
and clinician reasoning, but require curated
concept datasets and may omit unknown but
salient features.

3.4 Surrogate models and rule extraction

Fitting decision trees or linear models to
replicate  model outputs provides global
approximations that can be inspected.
Surrogates can expose systemic biases and
failure modes but may lack fidelity if the original
model is highly nonlinear.

3.5 Counterfactual
generative approaches

explanations and

Counterfactuals answer “what minimal change
would this image require to change the
diagnosis?” Recent methods use GANs,
autoencoders, or diffusion models to generate
realistic counterfactuals that avoid unrealistic
perturbations (Mertes et al.; newer diffusion
approaches). Counterfactuals are intuitively
appealing for clinicians because they mimic
differential diagnostic reasoning, but they

require careful constraints to preserve clinical
realism. PMC+1

3.6 Example-based and case-retrieval
explanations

Showing similar historical cases with known
outcomes leverages clinicians’ case-based
reasoning. Retrieval systems can be
augmented with relevance weighting to
emphasize clinically salient features. This
method aligns well with radiology practice but
depends on curated, annotated case libraries
and raises privacy concerns.

4. Evaluating Explanations: Metrics and
Protocols

Rigorous evaluation of XAl is necessary to
prevent misleading explanations and to quantify
benefits in clinical practice. We propose a multi-
axis evaluation schema:

4.1 Fidelity (faithfulness to model internals)

o Feature-perturbation fidelity: degree to
which regions flagged as important,
when perturbed, change the model
prediction. Perturbation-based metrics
provide direct measures of causal impact
but depend on perturbation realism.

e Model-inversion fidelity: measure
whether explanations align with internal
representations (e.g., whether attributed
neurons correspond to concept vectors).

Quantify using drop-in-confidence or AUC
degradation when removing top-k% important
pixels.
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4.2 Plausibility (alignment with human
reasoning)

« Expert agreement: overlap between
saliency maps and clinician-annotated
pathology (loU, Dice), or correlation with
expert localization scores. Note: high
plausibility does not guarantee fidelity
(models may use different features while
producing similar heatmaps).

e User-rated helpfulness: clinician
surveys scoring explanations  for
usefulness, clarity, and trust.

4.3 Robustness and stability

o Perturbation invariance: stability of
explanations to small, semantically
irrelevant image changes (noise,
rotations, intensity shifts). Explanations
should not vary wildly with minor input
transformations.

e Method stability: agreement across
explanation algorithms for a given model
input.

4.4 Discriminative utility and decision impact

e Decision improvement: does the
explanation improve clinician accuracy,
sensitivity, specificity, or diagnostic
speed when combined with model
predictions? Randomized controlled
evaluations with clinicians are the gold

standard.
e Trust calibration: measured Dby
appropriate  reliance (the clinician

accepts model when correct and rejects

it when wrong). Poor explanations can
lead to over- or under-reliance.

4.5 Computational and human factors
metrics

« Time to comprehension: how long
clinicians take to interpret an explanation.

o Cognitive load: measured via
standardized instruments (NASA-TLX).

o Interpretation error rate: frequency of
incorrect conclusions drawn from
explanations.

A sound evaluation protocol combines
computational and human-centered metrics:
quantify fidelity first (to ensure explanations
reflect model behavior), then plausibility, then
human usability and clinical impact (Chen et al.;
Huff et al.). Empirical literature reports frequent
disconnects between computational plausibility
and clinician utility, demonstrating the necessity
of end-to-end evaluation. Johns Hopkins

University+1

5. Experimental Design and Datasets
5.1 Dataset considerations

Quality XAl evaluation requires datasets with:
(1) diagnostic labels; (2) pixel-level annotations
(for plausibility metrics); (3) diverse patient
populations to assess fairness; (4) metadata
(scanner type, acquisition parameters) to detect
dataset artifacts; and (5) curated concept
annotations for concept-based methods. Public
datasets (ChestX-ray14, MIMIC-CXR, ISIC for
dermatology) provide starting points but may
lack dense localization labels; private, well-
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annotated institutional cohorts are often
necessary for clinical-grade evaluation.
(Rajpurkar et al.; broader imaging surveys).
arXiv+1

5.2 Recommended experimental pipeline

1. Model training: train baseline diagnostic
model(s) (e.g., ResNet, DenseNet) using
appropriate cross-validation and strict
patient splits to avoid leakage.

2. XAl method selection: implement a
suite of XAl methods (Grad-CAM
variants, integrated gradients, LIME
adaptations,  TCAYV, counterfactual
generators).

3. Computational evaluation:

o Measure fidelity (perturbation
tests), plausibility (loU against
localization  labels),  stability
(noise, augmentations).

o Assess method-specific
hyperparameters (e.g.,
upsampling methods for Grad-
CAM) via sensitivity analysis.

4. Human-centered evaluation:

o Reader studies: randomized
crossover designs where
clinicians interpret images with (a)
model prediction only, (b) model +
explanation, (c) model +
alternative explanation. Primary
endpoints: diagnostic accuracy,
time, and trust calibration.

o Think-aloud and qualitative
interviews: understand cognitive
processes and failure modes.

5. Ongoing monitoring:

o Post-deployment surveillance for
explanation drift, dataset shift, and
emergent biases.

5.3 Off-the-shelf vs. task-specific XAl

Not all XAl methods generalize across imaging
tasks. Saliency maps that assist in detection
tasks may be less helpful for subtle
classification tasks (e.g., predicting molecular
subtype from imaging). Tailor explanations to
clinical questions.

6. Human Factors and Trust in Clinical
Decision Support

6.1 Psychological aspects of trust

Trust in Al systems is multifaceted—
competence  (performance), predictability
(consistency), and explainability
(understandability) contribute to clinician trust.
Empirical studies show that explanations can
increase perceived transparency but do not
reliably improve reliance calibration; in some
cases, plausible but unfaithful explanations
increase over-trust, causing clinicians to accept
erroneous model outputs. Therefore,
explanations must be faithful to avoid
misleading users. PMC+1

6.2 Appropriate reliance and automation
bias
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Automation bias occurs when users defer
excessively to automation despite contrary
evidence. XAl can either mitigate or exacerbate
automation bias depending on its fidelity and
presentation.  Interventions include: (a)
presenting confidence intervals and uncertainty;
(b) surfacing counterfactuals that highlight
failure cases; (c) designing Ul that encourages
active verification rather than passive
acceptance.

6.3 Designing human-Al interaction

e Progressive disclosure: show compact
explanations by default, allow clinicians
to drill down to more detailed rationales.

« Contextualization: explanations should
connect to clinical vocabulary (e.g.,
“‘peripheral consolidation” rather than
pixel  coordinates).  Concept-based
methods help here.

o Actionable outputs: beyond saying “this
area is important”’, the system should
suggest next steps (e.g., recommend
additional imaging, second opinion).

Human-centered design principles must guide
XAl integration to ensure clinical workflows are
enhanced rather than burdened (Johns Hopkins
systematic review on human-centered XAl).
Johns Hopkins University

7. Robustness, Fairness, and Safety
7.1 Spurious correlations and shortcuts

Models can learn dataset artifacts (e.g.,
markers, laterality labels, demographic cues)
that correlate with outcomes in training but are

not causally related to pathology. Explanations
can help detect such shortcuts (if saliency maps
highlight labels), but they can also be
misleading if they mask these issues. Rigorous
stress testing and causal analyses are
necessary.

7.2 Distribution shift and explanation drift

Explanations may change when input
distributions shift (new scanners, populations).
Monitor explanation stability over time and re-
evaluate explanations under domain shifts.

7.3 Fairness and subgroup performance

Explainability should include subgroup audits:
do explanations look different across sex, race,
age, or disease subtypes? Disparities in
interpretability can worsen inequities (some
groups receiving less useful explanations).
Collect and report subgroup metrics for both
performance and explanation quality.

7.4 Safety mechanisms

e« Hard constraints: prevent the system
from making high-risk recommendations
without human sign-off.

« Flagging and escalation: when model
confidence is low or explanations are
unstable, force human review.

« Simulation of rare failure modes: use
generative models to produce edge-case
images to test explanation behavior.

8. Regulatory, Legal, and Ethical

Considerations
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Regulators increasingly require transparency
and robust evidence for Al/ML-based medical
devices. The FDA’s Action Plan and evolving
guidance emphasize lifecycle management,
real-world  performance  monitoring, and
documentation of changes to Al systems (FDA
AI/ML Action Plan and subsequent guidance).
U.S. Food and Drug Administration+1

8.1 Regulatory
explainability

expectations for

While regulators do not prescribe a specific XAl
technique, they require that manufacturers
provide sufficient evidence that the device is
safe, effective, and well-understood.
Explainability contributes to audit trails, root-
cause analysis, and clinician training materials.
Documenting explanation algorithms, their
limitations, evaluation metrics, and human
factors testing is essential for submissions.

8.2 Liability and transparency

Who is responsible when an Al-supported
decision leads to harm? Clear delineation in
product labeling (intended use, human oversight
requirements), informed consent where
appropriate, and rigorous clinical evaluation
mitigate legal risks. Transparent explanations
that accurately reflect model behavior support
post-market investigations.

8.3 Ethical principles

Adopt principles of beneficence (improving
outcomes), non-maleficence (avoiding harm via
misleading explanations), justice (equitable
performance), and autonomy (support clinician
and patient decision-making). XAl design must
respect patient privacy — example-based

explanations should de-identify or aggregate
cases.

9. Practical Deployment Pipeline and
Governance

We recommend a
deployment pipeline:

staged, safety-first

1. Preclinical development:

o Train model on curated datasets
and implement a suite of XAl
methods.

o Perform internal computational
fidelity and plausibility tests.

2. Pre-deployment validation:

o Conduct multi-reader studies with
clinicians  using  randomized
designs to measure decision
impact.

o Perform subgroup and fairness
audits, stress tests, and simulated
edge-case analysis.

3. Regulatory submission and

documentation:

o Provide evidence of performance,
explanation fidelity, human factors
testing, and risk mitigation
strategies.

4. Pilot clinical roll-out:

o Deploy in a narrow clinical setting
with human-in-the-loop oversight,
detailed logging, and rapid
feedback loops.
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5. Monitoring and maintenance:

o Continuous monitoring for drift in
both outputs and explanations;
scheduled re-calibration.

o Post-market surveillance and
incident reporting.

6. Governance:

o Establish a multidisciplinary Al
oversight committee (clinicians,
data scientists, ethicists,
legal/regulatory experts).

o Maintain reproducible pipelines,
version control for models and
explanation modules, and robust
audit logs.

This pipeline aligns with current regulatory
discussions and good practice
recommendations from regulatory agencies.
U.S. Food and Drug Administration

10. Case
Experiments

Studies and lHlustrative

Below we outline two conceptual case studies
demonstrating XAl evaluation and deployment.

10.1 Case A: Chest X-ray triage system with
Grad-CAM + case retrieval

Setting: Emergency department triage for
pneumonia detection.
Model: DenseNet classifier trained on ChestX-
ray14 with patient-wise splits. arXiv

XAl stack: Grad-CAM heatmaps (localization),
nearest-neighbor case retrieval (example-

based), and confidence intervals via deep
ensembles.

Evaluation:

o Fidelity: occlusion tests show that
occluding Grad-CAM hotspots reduces
predicted probability by >60% on positive
cases.

o Plausibility: radiologist-annotated
consolidation masks produce median
loU=0.48 with Grad-CAM  maps
(imperfect but informative).

e Clinical trial: randomized crossover
study with reporting of sensitivity,
specificity, time-to-decision, and trust
calibration.

Outcome: modest improvement in sensitivity
with no increase in false positives; human
factors study showed clinicians used heatmaps
mostly to verify localization, and case retrieval
helped reduce uncertainty when Grad-CAM
maps were diffuse.

10.2 Case B: Mammography screening with
counterfactual explanations

Setting: Screening mammography to reduce
recall rates.
Model: Ensemble CNN trained on multi-site
mammography images with biopsy-confirmed
labels.

XAl stack: GANterfactual counterfactuals to
show minimal realistic changes that flip
prediction, concept activations for calcification
VS mass.

Evaluation:
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matching XAl

Counterfactuals highlighted that the
model relied heavily on local texture
patterns; concept vectors aligned with
clinician-labeled calcifications.

Reader study showed counterfactuals
were more effective than heatmaps at
improving clinicians’ understanding of

borderline cases and reduced
unnecessary recalls in  simulated
cohorts. PMC

illustrative studies demonstrate that

modality to clinical task

(localization vs. diagnostic reasoning) is critical
for utility.

11. Open Challenges and Research Agenda

1.

Faithful human-centered
explanations: There remains a need for
explanation methods that are
simultaneously faithful to model internals
and understandable to clinicians.
Empirical work linking computational
fidelity to clinician outcomes remains
limited (Huff et al.; Chen et al.). PMC+1

Standardized benchmarks: Lack of
agreed datasets and protocols for XAl
evaluation in imaging  hampers
reproducibility. Community efforts should
produce curated benchmark suites with
localization labels, concept annotations,
and human-evaluation protocols.

Counterfactual realism: Generating
clinically realistic counterfactuals,
especially in complex modalities (MRI,
PET), is an ongoing challenge.

Page |10
4. Longitudinal and multimodal
explanations: Integrating temporal

imaging sequences and multi-modal data
(imaging + labs + genomics) into
coherent explanations is underexplored.

Causal XAl: Move from correlation-
based explanations to causal
frameworks that identify mechanisms
and modifiable factors.

Regulatory science for XAl: Harmonize
expectations across regulators for
acceptable XAl evidence packages,
human factors testing, and post-market
monitoring.

12. Recommendations and Best Practices

Co-design with clinicians: involve
domain experts from concept definition
through evaluation. Human-centered
design improves relevance and adoption.
Johns Hopkins University

Evaluate explanations on multiple
axes: fidelity, plausibility, stability, and
decision impact. Prioritize fidelity first to
avoid plausible-but-false explanations.

Use ensembles and uncertainty: pair
explanations with calibrated uncertainty
measures to reduce over-trust.

Tailor XAl modality to task: localization
tasks favor saliency; diagnostic
reasoning benefits from counterfactuals
and concept explanations.
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e Document limitations: provide users
with explicit statements about what
explanations can and cannot tell them.

« Governance and monitoring: maintain
model and explanation versioning, audit
trails, and scheduled re-evaluations.

13. Conclusion

Explainable Al is a necessary, though not
sufficient, component of trustworthy clinical
decision support in diagnostic imaging. A
principled approach combines  faithful
computational explanations, rigorous human-
centered evaluation, robust governance, and
alignment with regulatory expectations. We
have provided a roadmap for researchers and
practitioners to design, evaluate, and deploy
XAl systems that measurably improve clinician
performance and patient outcomes while
minimizing risk. Closing the gap between
academic XAl advances and clinically useful
systems requires standardized benchmarks,
cross-disciplinary collaboration, and longitudinal
evidence linking explanations to improved care.
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