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Abstract

Sepsis remains a leading cause of morbidity
and mortality in intensive care units (ICUs), with
early detection significantly improving patient
outcomes. Conventional approaches to sepsis
prediction rely on episodic clinical
measurements and rule-based scoring systems
such as SOFA or SIRS, which are limited by
static thresholds and delayed response to
physiological deterioration. The advent of
continuous monitoring through wearable
sensors and the application of advanced deep
learning techniques particularly Long Short-
Term Memory (LSTM) networks offer a
paradigm shift toward real-time, data-driven
prediction of sepsis onset.

This study presents a comprehensive
exploration of predictive modeling for early
sepsis detection using continuous wearable
sensor data streams. We develop and evaluate
an LSTM-based architecture that integrates
multi-modal physiological signals (heart rate,
respiratory rate, temperature, blood oxygen
saturation, and electrodermal activity) to predict
sepsis onset several hours before clinical
diagnosis. We emphasize data preprocessing,
temporal pattern extraction, feature
representation, model interpretability, and
evaluation metrics relevant to clinical
deployment.

Our findings suggest that LSTM networks can
capture complex temporal dependencies
inherent in  physiological time series,

outperforming traditional machine learning
models in predictive accuracy and lead-time
detection. The article also discusses ethical,
infrastructural, and translational considerations
in integrating predictive sepsis models into ICU
workflows.
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1. Introduction

1.1 Background and Significance

Sepsis is a life-threatening organ dysfunction
caused by a dysregulated host response to
infection (Singer et al., 2016). It affects
approximately 49 million people worldwide
annually and causes more than 11 million
deaths (Rudd et al., 2020). The mortality rate for
septic shock remains alarmingly high,
exceeding 40% in many ICUs. Timely diagnosis
and intervention are essential but challenging,
as sepsis progresses rapidly and often presents
with nonspecific early symptoms.

Traditional early warning systems such as the
Sequential Organ Failure Assessment
(SOFA), Modified Early Warning Score
(MEWS), and SIRS rely on intermittent
measurements and static thresholds. These
systems lack temporal sensitivity and cannot
leverage continuously evolving physiological
signals, resulting in delayed identification and
missed opportunities for intervention.

Recent advances in wearable biosensors now
enable real-time, non-invasive monitoring of key
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physiological parameters. Continuous data from
wearable devices capturing fluctuations in vital
signs every second offer an unprecedented
opportunity for dynamic risk modeling. However,
these data are inherently high-dimensional,
noisy, and temporally correlated, requiring
advanced models capable of learning non-linear
temporal dependencies (Fatunmbi, 2022).
1.2 Deep Learning for Temporal Clinical
Prediction
Deep learning, and in particular recurrent
neural networks (RNNs) and their modern
variants like Long Short-Term Memory
(LSTM) networks, excel at modeling sequential
data. LSTMs overcome the vanishing gradient
problem inherent in standard RNNs, making
them suitable for long-term temporal pattern
extraction (Hochreiter & Schmidhuber, 1997).
In healthcare, LSTM models have demonstrated
success in predicting acute clinical events such
as cardiac arrest, hypoxemia, and sepsis by
modeling the temporal progression of patient
vital signs (Shashikumar et al., 2017). This
capability positions LSTMs as the most
appropriate  model class for leveraging
continuous sensor data to detect early signs of
physiological deterioration preceding sepsis.

1.3 Study Objectives

The objectives of this study are threefold:

1. To develop an LSTM-based predictive model
for sepsis onset using real-time wearable
sensor data in ICU settings.

2. To evaluate the model's predictive
performance relative to traditional
approaches and static scoring systems.

3. To assess practical challenges and
translational potential in clinical deployment,
including interpretability, data integration,
and clinician trust.

2. Literature Review

2.1 Sepsis Detection Models

Prior predictive models have primarily relied on
static EHR data (vitals, labs, and
demographics). Logistic regression, random
forests, and gradient boosting have shown
moderate success but are limited by temporal
rigidity (Henry et al., 2015; Nemati et al., 2018).
Rule-based algorithms like InSight or Epic
Sepsis Model demonstrate utility but suffer
from high false alarm rates due to limited
adaptability.

In contrast, deep temporal models can
continuously update risk predictions as new
data arrive, making them more responsive to
physiological changes (Futoma et al., 2017).
2.2 LSTM and Temporal Dynamics

LSTMs model sequences using memory cells
that preserve relevant temporal information
while discarding noise. For continuous ICU
data, LSTMs can capture both short-term
fluctuations (e.g., transient fever) and long-term
trends (e.g., sustained tachycardia).

Fatunmbi (2023) emphasized that adaptive,
context-aware neural networks like LSTMs
enable autonomous systems to dynamically
adjust behavior based on environmental
feedback, a principle applicable to patient
monitoring. By learning sequential
dependencies, LSTMs provide an analytic
mechanism for early event detection long before
threshold-based systems would trigger alerts.
2.3 Wearable Sensors in Critical Care
Wearable sensors now offer continuous, high-
frequency acquisition of multi-modal
physiological data. These include
photoplethysmography (PPG), accelerometry,
electrodermal activity, and temperature sensors.
Their integration into ICU settings extends
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monitoring beyond wired bedside equipment,
allowing for both in-ward and post-discharge
surveillance.

However, challenges persist in data quality
(motion artifacts, sensor drift), data fusion, and
privacy-preserving transmission (Fatunmbi,

2022).
2.4 Limitations in Prior Work
e Sparse temporal sampling (limited

frequency data).

e Lack of integration between continuous
wearable data and static EHR variables.

e Poor interpretability of black-box deep
learning models.

o Limited generalizability across hospital
systems and sensor vendors.

3. Materials and Methods

3.1 Data Sources

We use a multi-modal dataset combining

wearable sensor streams and ICU EHR data

collected from 400 adult patients across three

tertiary hospitals. Wearable devices recorded

physiological signals at 1 Hz, including:

e Heart rate (HR)

Blood oxygen saturation (SpOl1)

Skin temperature

Electrodermal activity (EDA)

Respiration rate (RR)

The clinical record provided sepsis onset labels

(Sepsis-3 criteria), demographics,

comorbidities, and lab results.

3.2 Data Preprocessing

« Segmentation: Data segmented into non-
overlapping 60-minute windows with rolling
overlap of 30 minutes.

e« Normalization: Min-max normalization
applied per patient to mitigate inter-individual
variability.

« Noise reduction: Motion artifacts removed
using adaptive filtering and Hampel
smoothing.

e Labeling: A window labeled “pre-septic” if
sepsis onset occurred within the next 6
hours.

3.3 Model Architecture

The LSTM network consists of:

e Input layer (5-channel sensor data x time
steps = 60%60)

o Two stacked LSTM layers (128 and 64 units)
with dropout (0.3)

e Dense layer with ReLU activation

o Output layer (sigmoid) predicting probability
of sepsis onset within 6 hours Loss: Binary
cross-entropy Optimizer: Adam (Ir = 0.001)
Batch size: 64 Training epochs: 100

3.4 Baseline Comparisons

We compared the LSTM with:

« Logistic Regression (SOFA + SIRS features)

e Random Forest (handcrafted temporal
statistics)

« 1D CNN

e« GRU-based network

3.5 Evaluation Metrics

e« AUROC (Area Under the Receiver
Operating Curve)

e AUPRC (Area Under Precision-Recall

Curve)
e F1-score
o Early warning time (hours before clinical
onset)
o Calibration and reliability plots
Cross-validation (5-fold, patient-level
stratification) ensured robustness.
4. Results
4.1 Predictive Performance
Model AUROC [ AUPRC | F1 Early
Warning
(hrs)
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Logistic 0.72 0.45 0.52 1.2
Regression

Random 0.78 0.51 0.59 2.0
Forest

1D CNN 0.83 0.56 0.63 3.1
GRU 0.86 0.60 0.68 4.0
LSTM 0.91 0.69 0.74 5.3
(ours)

LSTM achieved an AUROC of 0.91 and could
predict sepsis onset approximately 5.3 hours
before clinical diagnosis, outperforming all
baselines.

4.2 Interpretability and Feature Importance
Using Integrated Gradients and SHAP analysis,
the model attributed significant predictive weight
to HR variability, sustained increase in EDA, and
declining SpO[] patterns, consistent with clinical
pathophysiology of sepsis.

4.3 Robustness and Generalization
Performance remained stable across
demographic subgroups, with slight decreases
in older patients due to baseline variability in
vital signs.

5. Discussion

5.1 Temporal Learning Advantage

The LSTM’s ability to retain long-term
dependencies enables modeling of gradual
physiological deterioration that precedes overt
sepsis. This reflects the adaptive behavior
framework described by Fatunmbi (2023),
where temporal feedback loops allow learning
from dynamic environments.

5.2 Clinical Integration

Integrating such predictive models into ICU
workflows  requires real-time  streaming
analytics, automated alerting, and clinician-in-
the-loop validation. Human factors trust,
interpretability, false alarm management are
pivotal to adoption (Johnson et al., 2021).

5.3 Ethical and Regulatory Considerations
Predictive algorithms in healthcare must ensure
fairness, transparency, and accountability.

Continuous monitoring raises privacy concerns

regarding physiological data streaming. FDA

guidance for Software-as-a-Medical-Device

(SaMD) emphasizes explainability,

reproducibility, and risk management.

5.4 Limitations

Dataset limited to specific hospital systems.

Sensor dropout and motion noise persist as

challenges.

LSTM interpretability remains limited relative

to linear models.

6. Future Work

Future directions include:

o Integration of Transformer architectures
for longer temporal context modeling.

e Federated learning for cross-institutional
model training while preserving data privacy.

o Explainable Al (XAl) modules to enhance
clinician trust through visual rationales.

o Adaptive alert thresholds that adjust to
patient-specific baselines.

7. Conclusion

This study demonstrates that LSTM-based deep

learning architectures applied to continuous

wearable sensor data can effectively predict

sepsis onset in ICU patients several hours

before clinical recognition. The integration of

real-time analytics with wearable sensing offers

transformative potential for proactive critical

care.

By uniting advances in precision sensing,

adaptive neural modeling, and human-centered

design, predictive sepsis models may redefine

early intervention strategies and reduce

mortality in intensive care medicine.
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