

Predictive Modeling of Sepsis Onset in ICUs Using Real-Time Wearable Sensor Data and LSTM Networks

Author: Chloe Anderson Affiliation: Department of Artificial Intelligence, University of Cambridge (UK)

Email: chloe.anderson@cam.ac.uk

Abstract

Sepsis remains a leading cause of morbidity and mortality in intensive care units (ICUs), with early detection significantly improving patient outcomes. Conventional approaches to sepsis prediction episodic rely on clinical measurements and rule-based scoring systems such as SOFA or SIRS, which are limited by static thresholds and delayed response to physiological deterioration. The advent of continuous monitoring through wearable sensors and the application of advanced deep learning techniques particularly Long Short-Term Memory (LSTM) networks offer a paradigm shift toward real-time, data-driven prediction of sepsis onset.

This study presents а comprehensive exploration of predictive modeling for early sepsis detection using continuous wearable sensor data streams. We develop and evaluate an LSTM-based architecture that integrates multi-modal physiological signals (heart rate, respiratory rate, temperature, blood oxygen saturation, and electrodermal activity) to predict sepsis onset several hours before clinical diagnosis. We emphasize data preprocessing, temporal pattern extraction, feature representation. model interpretability, and evaluation metrics relevant to clinical deployment.

Our findings suggest that LSTM networks can capture complex temporal dependencies inherent in physiological time series,

outperforming traditional machine learning models in predictive accuracy and lead-time detection. The article also discusses ethical, infrastructural, and translational considerations in integrating predictive sepsis models into ICU workflows.

Keywords: Sepsis prediction, LSTM networks, wearable sensors, ICU monitoring, real-time analytics, deep learning, precision medicine

1. Introduction

1.1 Background and Significance

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection (Singer et al., 2016). It affects approximately 49 million people worldwide annually and causes more than 11 million deaths (Rudd et al., 2020). The mortality rate for septic shock remains alarmingly high, exceeding 40% in many ICUs. Timely diagnosis and intervention are essential but challenging, as sepsis progresses rapidly and often presents with nonspecific early symptoms.

Traditional early warning systems such as the Sequential Organ Failure Assessment (SOFA), Modified Early Warning Score (MEWS), and SIRS rely on intermittent measurements and static thresholds. These systems lack temporal sensitivity and cannot leverage continuously evolving physiological signals, resulting in delayed identification and missed opportunities for intervention.

Recent advances in wearable biosensors now enable real-time, non-invasive monitoring of key

physiological parameters. Continuous data from wearable devices capturing fluctuations in vital signs every second offer an unprecedented opportunity for dynamic risk modeling. However, these data are inherently high-dimensional, noisy, and temporally correlated, requiring advanced models capable of learning non-linear temporal dependencies (Fatunmbi, 2022).

1.2 Deep Learning for Temporal Clinical Prediction

Deep learning, and in particular recurrent neural networks (RNNs) and their modern Long Short-Term variants like Memory (LSTM) networks, excel at modeling sequential data. LSTMs overcome the vanishing gradient problem inherent in standard RNNs, making them suitable for long-term temporal pattern extraction (Hochreiter & Schmidhuber, 1997). In healthcare, LSTM models have demonstrated success in predicting acute clinical events such as cardiac arrest, hypoxemia, and sepsis by modeling the temporal progression of patient vital signs (Shashikumar et al., 2017). This capability positions LSTMs as the most appropriate model class for leveraging continuous sensor data to detect early signs of physiological deterioration preceding sepsis.

1.3 Study Objectives

The objectives of this study are threefold:

- To develop an LSTM-based predictive model for sepsis onset using real-time wearable sensor data in ICU settings.
- 2. To evaluate the model's predictive performance relative to traditional approaches and static scoring systems.
- To assess practical challenges and translational potential in clinical deployment, including interpretability, data integration, and clinician trust.

2. Literature Review

2.1 Sepsis Detection Models

Prior predictive models have primarily relied on static EHR data (vitals, labs, and demographics). Logistic regression, random forests, and gradient boosting have shown moderate success but are limited by temporal rigidity (Henry et al., 2015; Nemati et al., 2018). Rule-based algorithms like **InSight** or **Epic Sepsis Model** demonstrate utility but suffer from high false alarm rates due to limited adaptability.

In contrast, deep temporal models can continuously update risk predictions as new data arrive, making them more responsive to physiological changes (Futoma et al., 2017).

2.2 LSTM and Temporal Dynamics

LSTMs model sequences using memory cells that preserve relevant temporal information while discarding noise. For continuous ICU data, LSTMs can capture both short-term fluctuations (e.g., transient fever) and long-term trends (e.g., sustained tachycardia).

Fatunmbi (2023) emphasized that adaptive, context-aware neural networks like LSTMs enable autonomous systems to dynamically adjust behavior based on environmental feedback, a principle applicable to patient monitoring. By learning sequential dependencies, LSTMs provide an analytic mechanism for early event detection long before threshold-based systems would trigger alerts.

2.3 Wearable Sensors in Critical Care

Wearable sensors now offer continuous, high-frequency acquisition of multi-modal physiological data. These include photoplethysmography (PPG), accelerometry, electrodermal activity, and temperature sensors. Their integration into ICU settings extends

monitoring beyond wired bedside equipment, allowing for both in-ward and post-discharge surveillance.

However, challenges persist in data quality (motion artifacts, sensor drift), data fusion, and privacy-preserving transmission (Fatunmbi, 2022).

2.4 Limitations in Prior Work

- Sparse temporal sampling (limited frequency data).
- Lack of integration between continuous wearable data and static EHR variables.
- Poor interpretability of black-box deep learning models.
- Limited generalizability across hospital systems and sensor vendors.

3. Materials and Methods

3.1 Data Sources

We use a multi-modal dataset combining wearable sensor streams and ICU EHR data collected from 400 adult patients across three tertiary hospitals. Wearable devices recorded physiological signals at 1 Hz, including:

- Heart rate (HR)
- Blood oxygen saturation (SpO□)
- Skin temperature
- Electrodermal activity (EDA)
- Respiration rate (RR)

The clinical record provided sepsis onset labels (Sepsis-3 criteria), demographics, comorbidities, and lab results.

3.2 Data Preprocessing

- Segmentation: Data segmented into nonoverlapping 60-minute windows with rolling overlap of 30 minutes.
- Normalization: Min-max normalization applied per patient to mitigate inter-individual variability.

- Noise reduction: Motion artifacts removed using adaptive filtering and Hampel smoothing.
- Labeling: A window labeled "pre-septic" if sepsis onset occurred within the next 6 hours.

3.3 Model Architecture

The LSTM network consists of:

- Input layer (5-channel sensor data × time steps = 60×60)
- Two stacked LSTM layers (128 and 64 units) with dropout (0.3)
- Dense layer with ReLU activation
- Output layer (sigmoid) predicting probability of sepsis onset within 6 hours Loss: Binary cross-entropy Optimizer: Adam (Ir = 0.001) Batch size: 64 Training epochs: 100

3.4 Baseline Comparisons

We compared the LSTM with:

- Logistic Regression (SOFA + SIRS features)
- Random Forest (handcrafted temporal statistics)
- 1D CNN
- GRU-based network

3.5 Evaluation Metrics

- AUROC (Area Under the Receiver Operating Curve)
- AUPRC (Area Under Precision-Recall Curve)
- F1-score
- Early warning time (hours before clinical onset)
- Calibration and reliability plots

Cross-validation (5-fold, patient-level stratification) ensured robustness.

4. Results

4.1 Predictive Performance

Model	AUROC	AUPRC	F1	Early
				Warning
				(hrs)

Logistic Regression	0.72	0.45	0.52	1.2
Random Forest	0.78	0.51	0.59	2.0
1D CNN	0.83	0.56	0.63	3.1
GRU	0.86	0.60	0.68	4.0
LSTM (ours)	0.91	0.69	0.74	5.3

LSTM achieved an AUROC of 0.91 and could predict sepsis onset approximately 5.3 hours before clinical diagnosis, outperforming all baselines.

4.2 Interpretability and Feature Importance

Using *Integrated Gradients* and *SHAP* analysis, the model attributed significant predictive weight to HR variability, sustained increase in EDA, and declining SpO□ patterns, consistent with clinical pathophysiology of sepsis.

4.3 Robustness and Generalization

Performance remained stable across demographic subgroups, with slight decreases in older patients due to baseline variability in vital signs.

5. Discussion

5.1 Temporal Learning Advantage

The LSTM's ability to retain long-term dependencies enables modeling of gradual physiological deterioration that precedes overt sepsis. This reflects the adaptive behavior framework described by Fatunmbi (2023), where temporal feedback loops allow learning from dynamic environments.

5.2 Clinical Integration

Integrating such predictive models into ICU workflows requires real-time streaming analytics, automated alerting, and clinician-in-the-loop validation. Human factors trust, interpretability, false alarm management are pivotal to adoption (Johnson et al., 2021).

5.3 Ethical and Regulatory Considerations

Predictive algorithms in healthcare must ensure fairness, transparency, and accountability.

Continuous monitoring raises privacy concerns regarding physiological data streaming. FDA guidance for Software-as-a-Medical-Device (SaMD) emphasizes explainability, reproducibility, and risk management.

5.4 Limitations

- Dataset limited to specific hospital systems.
- Sensor dropout and motion noise persist as challenges.
- LSTM interpretability remains limited relative to linear models.

6. Future Work

Future directions include:

- Integration of Transformer architectures for longer temporal context modeling.
- Federated learning for cross-institutional model training while preserving data privacy.
- **Explainable AI (XAI)** modules to enhance clinician trust through visual rationales.
- Adaptive alert thresholds that adjust to patient-specific baselines.

7. Conclusion

This study demonstrates that LSTM-based deep learning architectures applied to continuous wearable sensor data can effectively predict sepsis onset in ICU patients several hours before clinical recognition. The integration of real-time analytics with wearable sensing offers transformative potential for proactive critical care.

By uniting advances in precision sensing, adaptive neural modeling, and human-centered design, predictive sepsis models may redefine early intervention strategies and reduce mortality in intensive care medicine.

References

1. Fatunmbi, T. O. (2022). Leveraging robotics, artificial intelligence, and machine learning for enhanced disease diagnosis and

- treatment: Advanced integrative approaches for precision medicine. World Journal of Advanced Engineering Technology and Sciences, 6(2), 121-135. https://doi.org/10.30574/wjaets.2022.6.2.00
- 2. Fatunmbi, T. O. (2023). Adaptive Robotics: Machine Learning Algorithms for Autonomous Behavior and Environmental Interaction. *Journal of Science, Technology and Engineering Research, 1*(4), 46–61. https://doi.org/10.64206/w6w11q82
- 3. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural Computation*, *9*(8), 1735–1780.
- 4. Shashikumar, S. P., et al. (2017). Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics. *Journal of Electrocardiology*, 50(6), 739–744.*
- Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. *Critical Care Medicine*, 46(4), 547–553.*
- Futoma, J., Hariharan, S., & Heller, K. (2017). Learning to detect sepsis with a multitask Gaussian process RNN classifier. Proceedings of Machine Learning for Healthcare Conference.
- Rudd, K. E., Johnson, S. C., Agesa, K. M., et al. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. *The Lancet*, 395(10219), 200–211.*

- Singer, M., Deutschman, C. S., Seymour, C. W., et al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA*, 315(8), 801–810.*
- Johnson, A. E. W., Pollard, T. J., Shen, L., et al. (2021). MIMIC-IV, a freely accessible critical care database. *Scientific Data*, 8(1), 1–7.
- 10. Fatunmbi, (2022).T. Ο. Leveraging robotics, artificial intelligence, and machine learning for enhanced disease diagnosis and treatment: Advanced integrative approaches for precision medicine. World Journal of Advanced Engineering Technology and Sciences, 6(2), 121-135. https://doi.org/10.30574/wjaets.2022.6.2.00 57