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Abstract 
The banking sector increasingly relies on data 
mining and machine learning across distributed 
datasets to perform credit scoring, fraud 
detection, anti-money-laundering (AML) 
analytics, and personalized services. These 
capabilities, however, are constrained by 
stringent privacy requirements, regulatory 
obligations, and the commercial sensitivity of 
customer data. Cryptographic primitives 
principally Homomorphic Encryption (HE) and 
Secure Multi-Party Computation (SMPC, also 
MPC) provide mathematically grounded 
approaches to compute on private data without 
revealing underlying raw inputs. This 
manuscript synthesizes theory, system 
architectures, protocol choices, and applied 
patterns for deploying HE and SMPC in banking 
data-mining workflows. This paper (1) review 
the mathematical foundations and practical HE 
schemes (BFV, BGV, CKKS, TFHE, Paillier) and 
dominant MPC paradigms (Yao, GMW, SPDZ, 
garbled circuits, secret sharing); (2) evaluate 
performance, precision, and communication 
tradeoffs using current library ecosystems 
(Microsoft SEAL, HElib, OpenFHE) and MPC 
frameworks; (3) present reference architectures 
and hybrid HE–MPC compositions for realistic 
banking tasks (fraud detection, collaborative 
AML, privacy-preserving model training and 
inference, private set intersection); (4) propose 
evaluation metrics, threat models, and 

compliance considerations; and (5) identify 
research directions for scalability, latency, 
verifiability, and regulatory alignment.  
1. Introduction 
Modern banking depends on cross-
organizational data collaboration. Banks, 
payment processors, card networks, and 
regulators seek to combine insights from 
transaction streams, customer profiles, device 
telemetry, and third-party data to detect fraud, 
manage credit risk, and meet regulatory 
reporting obligations. Yet regulatory regimes 
(e.g., GDPR, GLBA, local data-protection laws) 
and commercial confidentiality limit unrestricted 
sharing of raw customer data. Consequently, 
there is strong demand for cryptographic 
techniques that permit joint analytics while 
keeping each party’s raw data confidential. 
Two families of cryptographic techniques have 
matured into practical building blocks for 
privacy-preserving data mining: Homomorphic 
Encryption (HE) enables computation directly 
on ciphertexts, while Secure Multi-Party 
Computation (SMPC) enables joint 
computations across multiple private inputs 
without revealing those inputs. Both approaches 
have strengths and tradeoffs HE minimizes 
interaction but often imposes heavy 
computational costs, whereas SMPC can be 
communication-heavy but computationally more 
efficient for certain operations. Hybrid 
constructions combining HE and SMPC are 
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particularly promising for banking workloads 
that require low latency, high accuracy, and 
regulatory auditability. 
This article offers a comprehensive, 
academically rigorous, and practically oriented 
treatment of HE and SMPC as applied to 
privacy-preserving data mining in banking. We 
aim to provide researchers and practitioners 
with the theoretical grounding, comparative 
evaluation, architectural patterns, and 
actionable deployment guidance necessary for 
journal-quality submission or enterprise 
adoption. 
2. Background and Related Work 
2.1 Historical perspective and milestones 
The advent of fully homomorphic encryption 
(FHE) the ability to evaluate arbitrary circuits on 
encrypted data is a watershed in cryptography. 
Gentry’s seminal construction (2009) 
demonstrated the theoretical possibility of FHE, 
sparking a two-decade effort to make HE 
schemes practical for real workloads. 
Subsequent work produced leveled and 
approximate HE schemes, improved 
bootstrapping techniques, and efficient 
implementations (e.g., BGV, BFV, CKKS) that 
trade off exactness, ciphertext size, and 
operational efficiency depending on workload 
characteristics.  
Parallel to HE, SMPC evolved from theoretical 
constructs (Yao’s two-party garbled circuits, 
GMW, secret sharing schemes) toward 
concretely efficient protocols (SPDZ family, 
garbled circuit optimizations, and efficient semi-
honest/malicious secure protocols). Recent 
literature surveys and systems research have 
focused on bringing SMPC into real-world use 
cases including tax fraud detection, private set 

intersection, joint model training, and financial 
analytics.  
2.2 Representative surveys and libraries 
Comprehensive surveys of HE and MPC 
implementations, along with comparative 
analyses of their efficiency and suitability for 
different tasks, provide the methodological basis 
for system selection in banking contexts. Recent 
survey and benchmarking studies evaluate 
accuracy, computation time, memory footprint, 
and communication overhead across HE 
schemes and MPC protocols. Implementation 
ecosystems such as Microsoft SEAL, HElib, 
OpenFHE, and MPC toolkits (e.g., MP-SPDZ, 
SPDZ-based implementations, Sharemind) are 
pivotal for applied deployments and have 
matured significantly over the last decade.  
3. Cryptographic Foundations 
This section explains the formal primitives, 
threat model, and security goals that underpin 
privacy-preserving data mining. 
3.1 Security model and threat assumptions 
We adopt the standard semi-honest (honest-
but-curious) and malicious adversary models 
used in MPC literature. In the semi-honest 
model, parties follow protocols but may attempt 
to learn extra information from intermediate 
messages. The malicious model allows arbitrary 
deviations and therefore requires stronger (and 
costlier) protocols, including zero-knowledge 
proofs or cut-and-choose variants. Banking 
applications with regulatory scrutiny often 
require malicious-secure options or verifiability 
mechanisms for audit trails. 
Security goals include input confidentiality (no 
party learns another’s plaintext inputs), 
correctness (computed result is correct or 
verifiable), and robustness (computation 
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completes or fails gracefully with accountability). 
Additional practical goals for banking include 
low verification overhead, auditability (verifiable 
logs of computations), and compliance with 
retention and consent rules. 
3.2 Homomorphic Encryption (HE): basic 
concepts 
Homomorphic encryption allows algebraic 
operations on ciphertexts such that the 
decrypted result equals the operation applied to 
plaintexts. Notable categories: 
 Partially Homomorphic Encryption 

(PHE): supports a single operation (e.g., 
Paillier supports additive homomorphism). 
Useful for secure aggregations and sums. 

 Somewhat/Leveled HE: supports limited 
depth of operations without bootstrapping 
(e.g., BGV/BFV for integer arithmetic). 

 Approximate HE (CKKS): supports 
approximate arithmetic on real numbers and 
is well suited for machine learning inference 
where approximate results suffice. 

 Fully Homomorphic Encryption (FHE): 
supports arbitrary-depth circuits via 
bootstrapping theoretically powerful but 
historically expensive; modern schemes and 
optimizations have reduced costs for select 
workloads. ACM Digital Library+1 

Key practical tradeoffs include noise growth 
(noise increases with homomorphic operations 
and constrains circuit depth), ciphertext 
expansion (storage and bandwidth overhead), 
bootstrapping costs (for FHE), and numeric 
precision (CKKS trades exactness for 
efficiency). 
3.3 Secure Multi-Party Computation (SMPC) 

SMPC enables parties to jointly compute a 
function f(x ,...,xₙ) without exposing inputs. Two 
principal paradigms: 
 Garbled Circuits and Yao’s protocol: 

optimized for two-party computations and 
boolean circuits; widely used for tasks with 
complex control flow. 

 Secret Sharing-based MPC (e.g., Shamir, 
additive, SPDZ): data is secret-shared 
among parties and computation proceeds 
via shared operations; well suited for 
arithmetic circuits and multi-party use. SPDZ 
variants offer malicious security through 
MACs and preprocessing phases. SMPC’s 
cost model emphasizes communication 
complexity and number of rounds; many 
modern protocols optimize for offline/online 
phases to amortize expensive 
preprocessing. For large datasets typical of 
banking, communication overhead can 
become the limiting factor.  

4. HE and SMPC Schemes: Practical 
Considerations 
4.1 Popular HE schemes and their banking 
suitability 
 Paillier (additive): efficient for secure sums 

and aggregation (e.g., aggregated 
transaction totals across banks). Low 
computational load but limited to additions 
and scalar multiplications on ciphertexts. 
Appropriate for privacy_preserving 
aggregations and simple scoring formulas 
where multiplicative depth is low. 

 BFV/BGV: support modular integer 
arithmetic and are suitable for exact 
computations required by some financial 
algorithms (e.g., integer counters, rule-
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based scoring). They can be parameterized 
for security and depth. 

 CKKS (Approximate HE): supports 
floating-point arithmetic approximately and 
is effective for machine learning inference 
(e.g., scoring with neural nets or logistic 
regression) where slight approximation is 
tolerable. CKKS is increasingly the practical 
choice for encrypted ML inference in finance 
due to numeric efficiency. SpringerLink 

 TFHE: optimized for Boolean gates and fast 
bootstrapping suited for bitwise operations 
and low-latency Boolean circuits. Choice 
depends on target computation (aggregation 
vs. ML inference vs. rule evaluation), 
acceptable approximation, and 
latency/throughput constraints. 

4.2 MPC protocols and selection criteria 
 Yao / Garbled Circuits: often efficient for 

two-party comparisons and decision trees, 
and can be combined with oblivious transfer 
optimizations. 

 GMW: favors operations requiring many 
AND and XOR gates. 

 SPDZ and derivatives: provide arithmetic-
circuit efficiency and malicious security, 
making them attractive for multi-bank 
collaborative analytics that require strong 
correctness guarantees. For collaborative 
AML or fraud detection among multiple 
banks, secret-sharing protocols (SPDZ 
family) provide a practical balance between 
privacy, correctness, and performance when 
supported by well-provisioned networks and 
preprocessing. 

4.3 Libraries and toolkits: maturity and 
ecosystem 

Production work commonly leverages open 
libraries: 
 Microsoft SEAL: a widely used HE library 

implementing BFV and CKKS variants with 
practical tooling for homomorphic pipelines 
and notable performance improvements 
over earlier versions. SEAL is suitable for 
prototyping and productionizing HE-based 
inference.  

 HElib: implements BGV and associated 
optimizations (ciphertext packing, faster 
linear transforms), widely used in research 
and some applied settings.  

 OpenFHE, TFHE libraries, and MP-SPDZ: 
ecosystems for experimentation and 
deployment; selection depends on language 
support, performance, and compliance 
requirements. Careful benchmarking and 
parameter tuning with chosen libraries is 
essential because default parameters can 
be suboptimal for banking workloads.  

5. Banking Use Cases and Architectures 
This section maps common banking analytics to 
HE/SMPC patterns, highlighting practical 
architectures. 
5.1 Fraud detection (real-time and batch) 
Requirements: low latency for real-time 
scoring, ability to combine institutional 
transaction histories, and detection of cross-
bank fraud patterns. 
HE pattern: Use CKKS or approximate HE to 
perform model inference on encrypted 
transaction feature vectors in cloud-based 
scoring services. The bank encrypts features 
and sends ciphertexts to an analytics provider 
that returns encrypted scores; decryption occurs 
within the bank’s environment. This model 
preserves confidentiality but requires practical 
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HE inference pipelines and may face throughput 
limits for high-volume streaming workloads. 
Recent experimental work demonstrates 
feasibility for models like XGBoost or neural 
nets with HE-friendly approximations.  
MPC pattern: For collaborative detection 
(multiple banks jointly compute graph analytics 
or aggregated risk indicators), SMPC using 
secret sharing and SPDZ-style protocols can 
jointly compute community scores or pagerank-
like measures without exposing raw transaction 
graphs to other parties. MPC is communication-
heavy but suitable for periodic batch analytics 
where latency tolerances are relaxed.  
Hybrid pattern: Use MPC for cross-institution 
aggregation and HE for local inference. For 
example, banks secret-share aggregated 
neighborhood metrics computed via MPC, then 
each bank performs encrypted local scoring with 
HE. 
5.2 Credit scoring and model training 
Private training: Training models across 
pooled data (federated datasets) without 
exposing raw records can be achieved via MPC 
(secure gradient aggregation) or HE (encrypted 
gradient computation with some central 
aggregator). Recent SMPC research 
demonstrates privacy-preserving logistic 
regression and neural network training with 
acceptable accuracy, though training costs 
remain significantly higher than plaintext 
training. 
Inference: HE (CKKS) is well suited for 
encrypted inference once models are trained 
banks can encrypt customer features and run 
models in an encrypted domain, returning 
scores without revealing inputs to third-party 

model providers. This supports vendorized 
scoring while protecting consumer data.  
5.3 Private set intersection (PSI) for 
compliance and AML 
PSI enables finding common elements (e.g., 
flagged entities) between datasets without 
revealing non-matching elements. HE and MPC 
both offer PSI protocols; specialized PSI 
implementations are highly efficient and 
practical for regulatory screening and watchlist 
matching when performance is a priority. 
6. System Architecture Patterns 
We present two reference architectures that 
map to core banking requirements. 
6.1 Client-centric HE inference 
(cloud/offload model) 
1. Client (Bank) side: Encrypt features with 

chosen HE scheme (CKKS/BFV) and upload 
ciphertexts to analytics provider. 

2. Cloud analytics: Apply homomorphic 
model inference; limit depth and operations 
to avoid costly bootstrapping. Use batching 
(ciphertext packing) to amortize costs. 

3. Return: Encrypted scores returned to client 
for decryption. 

Advantages: minimal interaction, good for 
single-party private inference against vendor 
models. Limitations: computationally heavy at 
cloud side, sensitive to model complexity and 
numeric precision. 
6.2 Federated MPC for collaborative 
analytics 
1. Participants (Banks): Secret-share local 

datasets across a consortium of computation 
nodes (could be held by the banks, a neutral 
third-party, or cloud providers). 
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2. Offline preprocessing: Generate 
correlated randomness (Beaver triples) to 
accelerate online phase (typical for SPDZ). 

3. Online execution: Execute arithmetic 
circuits for joint model training or graph 
analytics. 

4. Output: Only agreed aggregate results or 
model parameters are revealed per protocol 
specification. 

Advantages: strong privacy guarantees, 
flexible for multi-party. Limitations: requires 
robust network and typically high 
communication overhead. 
6.3 Hybrid HE–MPC pipelines 
Practical systems often blend HE and MPC to 
exploit their complementary strengths. For 
example, use MPC for sensitive, 
communication-bounded cross-party 
aggregation and HE for local encrypted 
inference, or use HE to encrypt local values 
used in MPC to reduce communication (or vice 
versa). 
7. Performance, Scalability, and Practical 
Tradeoffs 
7.1 Computation vs. communication tradeoff 
 HE is compute-heavy but interaction-light, 

making it attractive for scenarios where 
communication cost or multi-party 
coordination is expensive. 

 MPC often reduces local computation at the 
cost of significant communication, which can 
be acceptable for consortiums with high-
bandwidth links or where offline 
preprocessing amortizes cost. 

7.2 Precision, accuracy, and numerical 
stability 
Approximate schemes (CKKS) incur bounded 
error acceptable for ML inference but 

problematic for exact financial accounting. 
Where exact arithmetic is required, BFV/BGV or 
integer transforms should be used. 
7.3 Latency and real-time constraints 
Real-time fraud detection requires millisecond-
to-second latency; HE-only inference may not 
meet these constraints for complex models 
without aggressive optimizations. MPC is 
typically less suitable for strict real-time but can 
serve near-real-time with engineering effort and 
optimized networking. 
7.4 Resource costs and deployment 
economics 
Compute and storage costs for HE (large 
ciphertexts, bootstrapping) and MPC (network, 
CPU for preprocessing) must be compared 
against avoided compliance costs and business 
value of shared analytics. Benchmarking in 
representative environments is essential. 
8. Security Analysis and Verifiability 
8.1 Threats beyond cryptographic leakage 
HE and MPC protect data confidentiality under 
specified assumptions, but practical 
deployments must consider side channels 
(timing, memory access patterns), traffic 
analysis, and misconfiguration. Secure 
enclaves and verifiable computation techniques 
can mitigate some concerns but introduce their 
own trust models. 
8.2 Malicious adversaries and verifiable 
computation 
For high-assurance banking use cases, 
malicious security is often required. Protocols 
like SPDZ offer malicious security, but at extra 
cost. Verifiable computation and zero-
knowledge proofs can provide correctness 
guarantees (e.g., that a computation was 
performed correctly without revealing inputs), 
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which are valuable for auditability in regulatory 
contexts. 
9. Evaluation Methodology and Metrics 
For rigorous assessment, we recommend the 
following metrics: 

 Throughput (ops/sec) and latency (ms) for 
core operations (encrypted inference, MPC 
joins, PSI). 
 Communication volume (bytes 

exchanged) and round complexity 
(number of synchronization steps). 

 Accuracy / numeric error: especially for 
CKKS-based inference, measure model 
accuracy vs. plaintext baseline and quantify 
approximation error. 

 Scalability: performance as dataset size 
and number of parties grow. 

 Cost analysis: cloud CPU/GPU hours, 
network egress, storage. 

 Security assurances: adversary model 
(semi-honest vs. malicious), proof of 
security, and side-channel mitigations. 

Benchmarks should use realistic datasets 
(transactional traces, anonymized card data) 
and realistic network conditions. 
10. Regulatory, Compliance, and 
Governance Considerations 
10.1 Data protection and auditability 
Cryptographic approaches must integrate with 
recordkeeping, consent management, and data 
subject rights (access, rectification, deletion). 
For instance, HE ciphertexts and MPC shares 
still represent personal data in some legal 
frameworks; governance must specify retention, 
key management, and response to legal 
requests. 
10.2 Explainability and fairness 

ML models used in credit scoring or AML must 
be explainable and fair. Privacy-preserving 
pipelines should preserve (or at least not unduly 
impede) model interpretability and bias auditing. 
Protocols should include mechanisms for 
provenance and audit trails consistent with 
regulatory expectations. 
10.3 Key management and trust anchors 
Key lifecycle (generation, rotation, compromise 
recovery) is critical. Centralized key custody 
raises trust concerns; threshold key 
management (distributed key generation) and 
hardware security modules (HSMs) integrated 
with MPC key ceremonies provide resilience 
and regulatory alignment. 
11. Case Studies and Applied Research 
Several recent applied studies illustrate 
feasibility: 
 Private fraud detection systems using HE for 

encrypted transaction scoring demonstrated 
practical encrypted inference prototypes and 
examined accuracy tradeoffs for XGBoost 
and neural models.  

 Consortium-level anti-money laundering 
solutions leveraging SMPC for collaborative 
analytics show that pagerank-style and 
graph analytics can be computed under 
privacy constraints, enabling cross-
institution detection of sophisticated 
laundering patterns while preserving data 
confidentiality.  

These case studies underscore the potential for 
cryptographic privacy methods to transform 
financial analytics, while also revealing the 
engineering investment required. 
12. Implementation Roadmap for Banks 
A recommended phased approach: 
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1. Feasibility & Pilot: Select a high-value, 
non-latency-critical use case (e.g., batch 
AML analytics) and implement a prototype 
using MPC or HE libraries. 

2. Benchmarking & Parameter Tuning: Use 
representative data to evaluate 
performance, precision, and cost; tune 
cryptographic parameters and leverage 
batching/packing where possible. 

3. Hybrid Architecture Trials: Evaluate hybrid 
HE–MPC patterns for performance and 
usability. 

4. Governance & Legal Review: Align with 
compliance teams, determine key 
management, and design audit procedures. 

5. Production Hardening: Address side 
channels, monitoring, and operational 
processes (key rotations, incident 
response). 

6. Scale Out: Introduce additional consortium 
partners or expand to real-time pathways if 
feasible. 
13. Open Challenges and Research 
Directions 
Key areas for further work include: 
 Scalable preprocessing for MPC to reduce 

online latency for large-scale, multi-party 
analytics. 

 Efficient bootstrapping and numeric 
fidelity in FHE, particularly for complex ML 
models, to reduce computational cost. 

 Practical verifiable computation to 
provide end-to-end auditability without 
compromising privacy. 

 Side-channel resilient implementations 
and benchmarking standards for financial 
workloads. 

 Interoperability standards for privacy-
preserving analytics (schemas for encrypted 
model parameters, provenance metadata). 

 Human factors and operational 
governance that align cryptographic 
guarantees with business and regulatory 
workflows. 

14. Conclusion 
Homomorphic encryption and secure multi-
party computation provide complementary 
cryptographic tools that can materially advance 
privacy-preserving data mining in banking. HE 
excels in low-interaction encrypted inference 
and protecting computation outsourced to 
untrusted environments, while MPC enables 
true collaborative analytics across institutional 
boundaries. Hybrid architectures that exploit 
both techniques, combined with robust 
governance, key management, and verifiability, 
create a practical pathway to deploying privacy-
preserving analytics at scale. Ongoing research 
in algorithmic efficiency, verifiable computation, 
and deployment best practices will continue to 
close the performance gap between 
cryptographic privacy and conventional 
plaintext analytics. 
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