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Abstract 
Personalized dosing in oncology offers the 
promise of maximizing therapeutic benefit while 
minimizing toxicity, yet clinical practice remains 
constrained by population-level guidelines and 
limited individualized decision support. Deep 
reinforcement learning (DRL)   which combines 
representation learning with sequential 
decision-making under uncertainty   provides a 
principled framework for learning individualized, 
time-varying dose policies from longitudinal 
patient data and simulated environments. This 
article develops a comprehensive, scholarly, 
and application-oriented treatment of DRL for 
personalized dose optimization in oncology. We 
synthesize theoretical foundations, model 
architectures, environment and reward design, 
safety and interpretability considerations, 
evaluation protocols, and translational 
pathways toward clinical deployment. We 
critically review opportunities and limitations, 
present methodological best practices, and 
propose a research and validation roadmap 
bridging preclinical simulation, retrospective 
evaluation, and prospective trials. Throughout, 
we ground discussion in established work on 
reinforcement learning and clinical decision 
support and highlight domain-specific 
challenges in oncology (heterogeneous tumor 
biology, delayed outcomes, sparse labels, and 
strong safety constraints). This manuscript is 
intended as a near-submission-ready review + 
methods article for researchers developing 

DRL-driven precision dosing systems in cancer 
care. 
Keywords: deep reinforcement learning, 
personalized dosing, chemotherapy, precision 
oncology, sequential decision-making, safe RL, 
causal inference, simulation, translational AI. 
1. Introduction 
Precision medicine in oncology seeks to tailor 
diagnostic and therapeutic decisions to 
individual patient characteristics, tumor 
genomics, treatment history, and dynamic 
responses (e.g., tumor markers, imaging, 
toxicity trajectories). Dose optimization is a 
central component: for cytotoxic 
chemotherapies, targeted agents, and 
immunotherapies, the trade-off between 
efficacy and toxicity is both patient-specific and 
time-varying. Current dosing paradigms often 
rely on population-level metrics (e.g., body 
surface area, fixed schedules, or toxicity-driven 
reductions) and do not fully leverage 
longitudinal data collected during therapy. 
Reinforcement learning (RL) provides a 
mathematical framework for sequential 
decision-making where an agent learns a policy 
to maximize cumulative reward in an 
environment characterized by state transitions 
and delayed outcomes. Deep RL (DRL) 
augments RL with deep function approximators 
(neural networks) to handle high-dimensional 
state spaces and complex dynamics (Mnih et 
al., 2015; Sutton & Barto, 2018). In healthcare, 
DRL has shown promise in sepsis 
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management, mechanical ventilation 
scheduling, and dynamic treatment regimes 
(Komorowski et al., 2018; Murphy, 2003). 
Applying DRL to oncology dose optimization 
allows learning of individualized dosing policies 
that adapt to evolving biomarkers, toxicity, tumor 
response, and comorbidities while explicitly 
optimizing long-horizon outcomes. 
This article elaborates on DRL methods tailored 
for oncology dosing: problem formalization, 
state and reward design, model classes, offline 
and online learning strategies, safety and 
interpretability mechanisms, evaluation metrics, 
and pathways to clinical translation. We aim to 
provide enough methodological depth and rigor 
to support researchers and clinicians in 
designing reproducible, safe, and clinically 
relevant DRL systems. 
2. Background and Related Work 
2.1 Reinforcement learning fundamentals 
Reinforcement learning formalizes the 
interaction between an agent and an 
environment as a (partially observable) Markov 
decision process (MDP) or POMDP when 
observations are noisy or incomplete. At each 
timestep 𝑡, the agent observes a state 𝑠௧, takes 
an action 𝑎௧, receives a reward 𝑟௧, and the 
environment transitions to 𝑠௧ାଵaccording to 
dynamics 𝑃(𝑠௧ାଵ ∣ 𝑠௧, 𝑎௧). The objective is to 
learn a policy 𝜋(𝑎 ∣ 𝑠)maximizing expected 
discounted return 𝔼[∑ஶ

௧ୀ଴ 𝛾௧𝑟௧](Sutton & 
Barto, 2018). In clinical dosing, states include 
clinical measurements, actions correspond to 
dose choices, and rewards reflect intermediate 
and final clinical outcomes. 
2.2 Deep reinforcement learning 
DRL leverages deep neural networks to 
approximate value functions, policies, or models 
of the environment (Mnih et al., 2015; Silver et 

al., 2016). Principal algorithmic families include 
value-based (e.g., DQN and its variants), policy-
gradient (e.g., REINFORCE, PPO, A2C/A3C), 
and actor-critic methods (which combine value 
and policy estimators). Model-based RL 
attempts to learn dynamics and plan, often 
improving sample efficiency   attractive in 
healthcare where real-world experimentation is 
costly. 
2.3 RL in clinical settings 
Applications of RL to healthcare have grown: 
Komorowski et al. (2018) demonstrated RL for 
sepsis treatment strategies using observational 
ICU data; other works apply RL to mechanical 
ventilation weaning, fluid management, and 
insulin dosing. Statistical work on dynamic 
treatment regimes (e.g., Q-learning, A-learning) 
provides important conceptual and 
methodological foundations for RL in sequential 
medical decision-making (Murphy, 2003; 
Shortreed et al., 2011). Oncology-specific 
applications are emerging, including adaptive 
radiotherapy scheduling and dose 
individualization in chemotherapy and targeted 
therapies, though the literature is still nascent. 
2.4 Challenges unique to oncology dosing 
Oncology poses specific challenges: outcomes 
(e.g., progression-free survival, overall survival) 
are long-horizon and censored; intermediate 
biomarkers (e.g., tumor size, circulating tumor 
DNA) provide informative but imperfect and 
sparse signals; toxicity events may impose 
safety constraints (dose-limiting toxicities, 
hospitalizations); patient heterogeneity across 
tumor histology and molecular subtypes induces 
complex interactions; and randomized 
experimentation for policy learning is ethically 
constrained. These features necessitate careful 
reward engineering, incorporation of uncertainty 
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and safety, strong causal reasoning, and 
reliance on retrospective data and validated 
simulators. 
3. Problem Formulation: Dose Optimization 
as a Sequential Decision Task 
3.1 State, action, and observation spaces 

 State (𝑠௧): a rich, temporally-indexed 
representation of the patient including static 
covariates (age, sex, tumor subtype, genomic 
markers), dynamic covariates (lab values, vitals, 
tumor burden metrics, prior doses, toxicities), 
time-since-treatment, and latent variables 
inferred from prior history (e.g., estimated drug 
clearance). When full patient state is 
unobservable, model as a POMDP and use 
history-encoding methods (RNNs, 
Transformers) or belief-state estimators. 

 Action (𝑎௧): discrete or continuous dosing 
decisions. Discrete actions might include dose 
levels (e.g., 0.5×, 1.0×, 1.5× standard dose), 
hold/titrate, or escalate/de-escalate. Continuous 
actions enable selecting precise milligram 
dosages but increase learning complexity and 
may require bounded action spaces. 

 Observation (𝑜௧): clinically measurable 
surrogates at each visit (lab results, toxicity 
grades, imaging-derived metrics). Observations 
arrive irregularly; handle via time-aware models 
(time embeddings, decay-based imputations). 
3.2 Transition dynamics and modeling 
Cancer progression and 
pharmacodynamics/pharmacokinetics (PD/PK) 
determine transitions. Model-free RL ignores 
explicit dynamics, while model-based RL learns 
dynamics 𝑃(𝑠௧ାଵ ∣ 𝑠௧, 𝑎௧), enabling planning and 
counterfactual reasoning. Hybrid approaches 
combine mechanistic PK/PD models with data-
driven components (physics-informed neural 
networks or Bayesian hierarchical models). 

3.3 Reward design 
A central design decision: reward must encode 
clinical priorities and long-term trade-offs. 
Candidate components: 

 Short-term clinical signals: decreases in 
tumor markers, radiographic response, 
absence/reduction of grade ≥3 toxicities, 
preservation of quality-of-life indicators. 

 Long-term outcomes: progression-free 
survival (PFS), overall survival (OS), time-to-
progression (TTP). These are delayed and 
possibly censored. 

 Penalty terms: toxicity penalties, 
hospitalization costs, severe adverse events, or 
large deviations from standard-of-care. 
Construct composite reward 𝑟௧ = 𝑤ଵ ⋅

Δ(tumor burden) + 𝑤ଶ ⋅ 𝐼(toxicity) + 𝑤ଷ ⋅

long-term proxy, where weights 𝑤௜reflect clinical 
priorities. Reward shaping can accelerate 
learning but must avoid introducing bias that 
favors short-term gains at long-term cost. Use 
domain experts to calibrate reward weights and 
validate with sensitivity analyses. 
3.4 Constraints and safety 
Clinical constraints are hard: avoid policies that 
risk severe toxicity. Formulate as constrained 
MDPs (CMDPs) with safety constraints on 
expected cumulative toxicity or use risk-
sensitive objectives (CVaR optimization, worst-
case regret). Safety layers (shielding, action 
filters), conservative policy improvement, and 
human-in-the-loop oversight are critical for 
deployment. 
4. Data Sources: Retrospective Cohorts, 
Simulators, and Synthetic Data 
4.1 Retrospective electronic health records 
(EHR), clinical trials, and registries 
High-quality longitudinal datasets are 
necessary. Sources include institutional 
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oncology EHRs, multi-institutional registries, 
and clinical trial repositories. Challenges: 
missingness, variable measurement frequency, 
censoring, selection bias, and treatment 
assignment confounding. Preprocessing 
includes harmonization of variable definitions, 
time alignment, imputation strategies for 
missing data, and creation of time-series 
features. 
4.2 Mechanistic and hybrid simulators 
Simulators enable safe policy experimentation 
and counterfactual evaluation. Options: 

 Mechanistic PK/PD models: well-established 
for many chemotherapies; simulate drug 
concentration-time profiles and toxicities. 

 Tumor growth models: e.g., exponential, 
logistic, or agent-based tumor growth models 
calibrated to patient-level data. 

 Hybrid simulators: combine mechanistic 
submodels (PK/PD, tumor kinetics) with 
stochastic patient-level variability (frailty terms) 
and data-driven residual models learned from 
observational data. 
Calibration and validation against held-out 
clinical datasets is mandatory. 
4.3 Synthetic data generation 
Generative models (e.g., variational 
autoencoders, GANs, probabilistic graphical 
models) can augment training data, preserving 
privacy while providing diverse trajectories. 
Synthetic data must be validated to ensure 
distributional fidelity and not introduce artifacts. 
5. Model Architectures and Algorithmic 
Choices 
5.1 Offline (batch) vs online learning 

 Offline RL: Learning from logged (historical) 
datasets without active experimentation. This is 
the most realistic initial setting for clinical 
applications. Offline RL must contend with 

distributional shift and limited support for optimal 
actions in historical data. Algorithms: Batch-
constrained Q-learning (BCQ), Conservative Q-
learning (CQL), and other 
conservative/regularized approaches mitigate 
overestimation and covariate shift. 

 Online RL: Interactive learning in a live 
environment or simulator; permits exploration 
but requires safety constraints. In healthcare, 
online learning is primarily applicable in 
simulated environments or during carefully 
controlled clinical trials. 
5.2 Value-based, policy-gradient, and actor-
critic approaches 

 Value-based (DQN and variants): Suitable for 
discrete action spaces; approximate the Q-
function using deep networks (Mnih et al., 
2015). Use double-Q, dueling architectures, and 
prioritized replay to stabilize learning. 

 Policy-gradient / Actor-Critic (PPO, A3C, 
DDPG, SAC): Handle continuous action spaces 
and stochastic policies. Soft Actor-Critic (SAC) 
is sample-efficient and stable for continuous 
dosing. Proximal Policy Optimization (PPO) 
offers robustness in policy updates. 

 Distributional RL and uncertainty-aware 
methods: Learn full return distributions (e.g., 
C51, QR-DQN) to quantify risk and inform 
conservative dose selection. 
5.3 Representation learning for longitudinal 
clinical data 
Time-series encoders like recurrent neural 
networks (GRU, LSTM), temporal convolutional 
networks, and Transformer-based models can 
encode patient histories. Incorporate time 
embeddings and masking to account for 
irregular sampling. Multi-modal fusion 
integrates structured EHR data, imaging 
features, and genomics. 
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5.4 Model-based RL and planning 
Model-based methods learn a transition model 
and reward model to simulate counterfactual 
trajectories and perform planning (e.g., MPC, 
imagined rollouts). In oncology, integrating 
mechanistic PK/PD models as priors in model-
based RL increases interpretability and sample 
efficiency. 
5.5 Causal and counterfactual 
considerations 
Causal inference methods (propensity score 
modeling, marginal structural models, structural 
nested models) are critical to address 
confounding in retrospective data and validate 
learned policies. Counterfactual regret 
estimation and off-policy policy evaluation 
(OPE) methods (importance sampling, 
weighted IS, doubly robust estimators) allow 
estimation of policy value from historical logs. 
6. Training Protocols and Practical 
Considerations 
6.1 Preprocessing and feature engineering 

 Time discretization aligned with clinical decision 
frequency. 

 Feature normalization, embedding of 
categorical variables. 

 Missing data imputation: use clinically-informed 
methods (last observation carried forward 
where appropriate), multiple imputation, or 
model-based imputation using deep generative 
models. 

 Construct history windows and summary 
statistics (e.g., slopes of tumor markers). 
6.2 Offline RL: mitigating distributional shift 

 Use conservative algorithms (CQL, BCQ) to 
avoid overconfident extrapolation to actions not 
present in the dataset. 

 Regularize policies toward clinician behavior 
(behavior cloning augmentation) to ensure 
plausibility. 

 Use uncertainty-aware policies: e.g., ensemble 
models, bootstrap ensembles, or Bayesian 
neural networks to quantify epistemic 
uncertainty. 
6.3 Reward shaping and calibration 

 Iteratively refine reward weights using clinician 
inputs and retrospective simulations. 

 Ensure rewards are temporally consistent and 
avoid perverse incentives. 

 Use multi-objective RL formulations or 
scalarization to balance efficacy and safety. 
6.4 Hyperparameter tuning and validation 

 Cross-validate via patient-based splits; avoid 
time leakage. 

 Use multiple seeds and ensemble of models to 
ensure robustness. 

 Evaluate sensitivity to reward weights, state 
representations, and action discretization. 
7. Evaluation: Offline and Prospective 
Strategies 
7.1 Offline evaluation metrics 

 Policy value estimates: Off-policy evaluation 
(OPE) using weighted importance sampling, 
per-decision IS, or doubly robust methods. 

 Clinical surrogate outcomes: simulated PFS, 
tumor shrinkage rates, cumulative toxicity 
incidence. 

 Safety metrics: rate of high-toxicity actions, 
frequency of dosing outside standard-of-care 
bounds. 

 Robustness metrics: performance under 
domain shift (e.g., across molecular subtypes). 
7.2 Simulation-based validation 
Use validated simulators to run counterfactual 
rollouts and compare policies under randomized 
seeds and patient heterogeneity. Simulators 
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permit stress-testing under rare but critical 
scenarios (e.g., organ failure). 
7.3 Retrospective clinician-in-the-loop 
validation 
Compare recommended actions to clinician 
decisions in held-out datasets; use domain 
experts to qualitatively assess policy plausibility. 
Conduct case studies where policies suggest 
divergent dosing to analyze rationale and 
potential benefits/risks. 
7.4 Prospective evaluation and clinical trials 

 Phase 0 / Feasibility studies: Evaluate safety 
and clinician acceptance in small cohorts with 
human oversight. 

 Randomized controlled trials (RCTs): 
Compare DRL-guided dosing versus standard-
of-care or clinician-led dose selection for well-
defined indications. Trial design must consider 
adaptive randomization, stopping rules, and 
ethical oversight. 

 Pragmatic trials and registries: Post-
deployment monitoring using registries and real-
world evidence to evaluate long-term outcomes. 
8. Safety, Interpretability, and Regulatory 
Considerations 
8.1 Safety-by-design 

 Constrain action spaces to clinically acceptable 
doses. 

 Implement a safety filter: reject or flag any DRL-
proposed dose that violates predefined clinical 
rules. 

 Use conservative policy improvement 
techniques that only propose actions near the 
distribution of observed clinician actions until 
safety is established. 
8.2 Interpretability and explanations 

 Provide case-level explanations for dose 
recommendations: feature attributions 
(Integrated Gradients, SHAP), counterfactual 

examples (what-if analyses), and model-
agnostic surrogates (decision trees 
approximating policy). 

 Present uncertainty estimates and confidence 
intervals for proposed actions. 
8.3 Human-in-the-loop and clinician 
workflows 
Integrate recommendations as decision support 
rather than autonomous dosing: present the top 
k dose suggestions, rationale, key features 
driving the recommendation, and safety alerts. 
This respects clinician judgment and aids 
acceptance. 
8.4 Regulatory and ethical landscape 

 Regulatory agencies (FDA, EMA) require 
evidence of safety, effectiveness, and post-
market surveillance for AI-enabled medical 
devices. Establish a clinical evidence plan and 
risk management documentation. 

 Ethical concerns: fairness across patient 
subgroups, informed consent when using 
adaptive systems, transparency about 
algorithmic limitations. 

 Data governance: ensure patient privacy, 
appropriate data use agreements, and model 
stewardship. 
9. Case Study: Conceptual Example Pipeline 
(This section outlines a full pipeline for a 
hypothetical targeted therapy dose optimization 
problem   conceptual but detailed to guide 
implementation.) 

1. Problem scope: Dose optimization for a 
tyrosine kinase inhibitor (TKI) in metastatic 
disease where therapeutic index varies across 
patients and adverse events are dose-limiting. 

2. Data collection: Assemble multi-center 
retrospective cohort including dosing records, 
PK/PD measures, tumor response metrics, 
toxicity grades, prior therapies, and genomics. 
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3. Simulator development: Build a hybrid PK/PD 
+ tumor kinetics simulator calibrated to cohort 
via hierarchical Bayesian inference. Validate 
simulator by reproducing distributions of PFS 
and cumulative toxicity in held-out patients. 

4. State representation: Use a time-aware 
Transformer encoder over historical 
observations enriched with static covariates and 
posterior estimates from PK models. 

5. Action space: Discrete actions mapping to 
multiples of the standard dose plus hold/reduce 
actions. 

6. Reward function: Composite reward with 
immediate penalties for grade ≥3 toxicities and 
delayed rewards for tumor shrinkage and 
simulated PFS. 

7. Algorithm: Offline DRL with Conservative Q-
Learning (CQL) using ensemble Q-networks for 
uncertainty estimation and behavior-cloning 
regularization to limit extrapolation. 

8. Validation: 
o OPE using doubly robust estimators on 

historical logs. 
o Simulator rollouts across patient strata. 
o Clinician review of top divergent cases. 
9. Deployment pathway: Feasibility study with 

human oversight -> pilot randomized study 
comparing DRL-assisted dosing vs standard 
guideline-based dosing with safety endpoints. 
This pipeline highlights the interplay among 
mechanistic modeling, conservative offline RL, 
and staged validation required for a credible 
translational project. 
10. Limitations and Open Challenges 

 Causal confounding in observational data: 
Incomplete adjustment can bias policy learning. 
Integration of causal inference methods is 
crucial but nontrivial. 

 Sparse and delayed outcomes: Long-horizon 
endpoints and censoring complicate credit 
assignment; proxies and intermediate 
biomarkers help but may not fully capture long-
term effects. 

 Limited action coverage in historical logs: 
Offline learning is constrained by the diversity of 
actions in the dataset; conservative algorithms 
mitigate but do not eliminate this limitation. 

 Simulator fidelity: Simulators are 
approximations; policies valid in silico may fail in 
vivo. Demand rigorous calibration and 
transparent uncertainty quantification. 

 Ethical and social considerations: 
Algorithmic bias, patient autonomy, and clinician 
acceptance require ongoing stakeholder 
engagement. 

 Computational and data requirements: High-
quality multi-modal data and compute resources 
are needed; resource constraints may limit 
generalizability. 
11. Recommendations and Best Practices 

1. Start with conservative offline RL: Use CQL-
style methods and behavior cloning 
regularization when learning from retrospective 
EHRs. 

2. Incorporate mechanistic knowledge: Use 
PK/PD and tumor kinetics as priors or building 
blocks in model-based RL. 

3. Design clinically meaningful rewards: Co-
design reward functions with oncologists and 
iterate using sensitivity analysis. 

4. Prioritize safety and interpretability: 
Implement action constraints, uncertainty 
quantification, and human-in-the-loop 
workflows. 

5. Use validated simulators: For stress-testing 
and prospective trial design, ensure simulators 
reproduce real-world distributions. 
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6. Adopt robust evaluation: Combine OPE, 
simulator rollouts, clinician review, and 
ultimately prospective studies. 

7. Document model development and 
governance: Maintain reproducible pipelines, 
versioning, and audit trails to satisfy regulatory 
and ethical requirements. 
12. Discussion 
DRL has the potential to transform oncology 
dosing by enabling individualized, adaptive, and 
temporally-aware policies that optimize long-
term patient outcomes. The methodological 
toolbox   offline DRL, model-based planning, 
uncertainty-aware policies, and causal 
inference   offers a pathway to safe and effective 
decision support. However, substantial work 
remains in data curation, simulator fidelity, 
evaluation methodologies, and practical 
integration into clinician workflows. The 
translational path requires careful staging: 
rigorous offline validation, simulator-based 
safety testing, small feasibility studies, and well-
designed randomized trials. Multidisciplinary 
collaboration among oncologists, 
pharmacologists, data scientists, and regulatory 
experts is indispensable. 
13. Conclusion 
This article provides a comprehensive, 
academically rigorous, and practically oriented 
blueprint for developing deep reinforcement 
learning systems for personalized dose 
optimization in oncology. By combining 
theoretical underpinnings, domain-specific 
modeling, and a conservative translational 
approach emphasizing safety, interpretability, 
and clinical validation, researchers can 
responsibly explore the potential of DRL in 
cancer treatment. Future work should focus on 
constructing high-fidelity simulators, integrating 

causal discovery methods, and executing 
prospective clinical evaluations that 
demonstrate improved patient-centered 
outcomes. 
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