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Abstract

Personalized dosing in oncology offers the
promise of maximizing therapeutic benefit while
minimizing toxicity, yet clinical practice remains
constrained by population-level guidelines and
limited individualized decision support. Deep
reinforcement learning (DRL) which combines
representation learning  with  sequential
decision-making under uncertainty provides a
principled framework for learning individualized,
time-varying dose policies from longitudinal
patient data and simulated environments. This
article develops a comprehensive, scholarly,
and application-oriented treatment of DRL for
personalized dose optimization in oncology. We
synthesize theoretical foundations, model
architectures, environment and reward design,
safety and interpretability considerations,
evaluation  protocols, and translational
pathways toward clinical deployment. We
critically review opportunities and limitations,
present methodological best practices, and
propose a research and validation roadmap
bridging preclinical simulation, retrospective
evaluation, and prospective trials. Throughout,
we ground discussion in established work on
reinforcement learning and clinical decision
support and highlight domain-specific
challenges in oncology (heterogeneous tumor
biology, delayed outcomes, sparse labels, and
strong safety constraints). This manuscript is
intended as a near-submission-ready review +
methods article for researchers developing

DRL-driven precision dosing systems in cancer
care.
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1. Introduction

Precision medicine in oncology seeks to tailor
diagnostic and therapeutic decisions to
individual  patient  characteristics, tumor
genomics, treatment history, and dynamic
responses (e.g., tumor markers, imaging,
toxicity trajectories). Dose optimization is a
central component: for cytotoxic
chemotherapies, targeted agents, and
immunotherapies, the trade-off between
efficacy and toxicity is both patient-specific and
time-varying. Current dosing paradigms often
rely on population-level metrics (e.g., body
surface area, fixed schedules, or toxicity-driven
reductions) and do not fully leverage
longitudinal data collected during therapy.
Reinforcement learning (RL) provides a
mathematical framework for  sequential
decision-making where an agent learns a policy
to maximize cumulative reward in an
environment characterized by state transitions
and delayed outcomes. Deep RL (DRL)
augments RL with deep function approximators
(neural networks) to handle high-dimensional
state spaces and complex dynamics (Mnih et
al., 2015; Sutton & Barto, 2018). In healthcare,
DRL has shown promise in sepsis
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management, mechanical ventilation
scheduling, and dynamic treatment regimes
(Komorowski et al.,, 2018; Murphy, 2003).
Applying DRL to oncology dose optimization
allows learning of individualized dosing policies
that adapt to evolving biomarkers, toxicity, tumor
response, and comorbidities while explicitly
optimizing long-horizon outcomes.

This article elaborates on DRL methods tailored
for oncology dosing: problem formalization,
state and reward design, model classes, offline
and online learning strategies, safety and
interpretability mechanisms, evaluation metrics,
and pathways to clinical translation. We aim to
provide enough methodological depth and rigor
to support researchers and clinicians in
designing reproducible, safe, and clinically
relevant DRL systems.

2. Background and Related Work

2.1 Reinforcement learning fundamentals
Reinforcement  learning  formalizes the
interaction between an agent and an
environment as a (partially observable) Markov
decision process (MDP) or POMDP when
observations are noisy or incomplete. At each
timestep t, the agent observes a state s;, takes
an action a;, receives a reward r;, and the
environment transitions to s;,;according to
dynamics P(s;41 | S¢,a;). The objective is to
learn a policy m(a | s)maximizing expected
discounted return E[X2, y'r](Sutton &
Barto, 2018). In clinical dosing, states include
clinical measurements, actions correspond to
dose choices, and rewards reflect intermediate
and final clinical outcomes.

2.2 Deep reinforcement learning

DRL leverages deep neural networks to
approximate value functions, policies, or models
of the environment (Mnih et al., 2015; Silver et

al., 2016). Principal algorithmic families include
value-based (e.g., DQN and its variants), policy-
gradient (e.g., REINFORCE, PPO, A2C/A3C),
and actor-critic methods (which combine value
and policy estimators). Model-based RL
attempts to learn dynamics and plan, often
improving sample efficiency attractive in
healthcare where real-world experimentation is
costly.

2.3 RL in clinical settings

Applications of RL to healthcare have grown:
Komorowski et al. (2018) demonstrated RL for
sepsis treatment strategies using observational
ICU data; other works apply RL to mechanical
ventilation weaning, fluid management, and
insulin dosing. Statistical work on dynamic
treatment regimes (e.g., Q-learning, A-learning)
provides important conceptual and
methodological foundations for RL in sequential
medical decision-making (Murphy, 2003;
Shortreed et al,, 2011). Oncology-specific
applications are emerging, including adaptive
radiotherapy scheduling and dose
individualization in chemotherapy and targeted
therapies, though the literature is still nascent.
2.4 Challenges unique to oncology dosing
Oncology poses specific challenges: outcomes
(e.g., progression-free survival, overall survival)
are long-horizon and censored; intermediate
biomarkers (e.g., tumor size, circulating tumor
DNA) provide informative but imperfect and
sparse signals; toxicity events may impose
safety constraints (dose-limiting toxicities,
hospitalizations); patient heterogeneity across
tumor histology and molecular subtypes induces
complex interactions; and randomized
experimentation for policy learning is ethically
constrained. These features necessitate careful
reward engineering, incorporation of uncertainty
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and safety, strong causal reasoning, and
reliance on retrospective data and validated
simulators.

3. Problem Formulation: Dose Optimization
as a Sequential Decision Task

3.1 State, action, and observation spaces
State (s;): a rich, temporally-indexed
representation of the patient including static
covariates (age, sex, tumor subtype, genomic
markers), dynamic covariates (lab values, vitals,
tumor burden metrics, prior doses, toxicities),
time-since-treatment, and latent variables
inferred from prior history (e.g., estimated drug
clearance). When full patient state is
unobservable, model as a POMDP and use
history-encoding methods (RNNs,
Transformers) or belief-state estimators.
Action (a;): discrete or continuous dosing
decisions. Discrete actions might include dose
levels (e.g., 0.5%, 1.0%, 1.5x standard dose),
hold/titrate, or escalate/de-escalate. Continuous
actions enable selecting precise milligram
dosages but increase learning complexity and
may require bounded action spaces.
Observation (o;): clinically measurable
surrogates at each visit (lab results, toxicity
grades, imaging-derived metrics). Observations
arrive irregularly; handle via time-aware models
(time embeddings, decay-based imputations).
3.2 Transition dynamics and modeling
Cancer progression and
pharmacodynamics/pharmacokinetics (PD/PK)
determine transitions. Model-free RL ignores
explicit dynamics, while model-based RL learns
dynamics P(s;4+1 | St at), enabling planning and
counterfactual reasoning. Hybrid approaches
combine mechanistic PK/PD models with data-
driven components (physics-informed neural
networks or Bayesian hierarchical models).

3.3 Reward design

A central design decision: reward must encode
clinical priorities and long-term trade-offs.
Candidate components:

Short-term clinical signals: decreases in
tumor markers, radiographic response,
absence/reduction of grade =3 toxicities,
preservation of quality-of-life indicators.
Long-term outcomes: progression-free
survival (PFS), overall survival (OS), time-to-
progression (TTP). These are delayed and
possibly censored.

Penalty terms: toxicity penalties,
hospitalization costs, severe adverse events, or
large deviations from standard-of-care.
Construct composite reward e =wg -
A(tumor burden) + w, - I(toxicity) + ws -
long-term proxy, where weights w;reflect clinical
priorities. Reward shaping can accelerate
learning but must avoid introducing bias that
favors short-term gains at long-term cost. Use
domain experts to calibrate reward weights and
validate with sensitivity analyses.

3.4 Constraints and safety

Clinical constraints are hard: avoid policies that
risk severe toxicity. Formulate as constrained
MDPs (CMDPs) with safety constraints on
expected cumulative toxicity or wuse risk-
sensitive objectives (CVaR optimization, worst-
case regret). Safety layers (shielding, action
filters), conservative policy improvement, and
human-in-the-loop oversight are critical for
deployment.

4. Data Sources: Retrospective Cohorts,
Simulators, and Synthetic Data

4.1 Retrospective electronic health records
(EHR), clinical trials, and registries
High-quality longitudinal datasets are
necessary. Sources include institutional
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oncology EHRs, multi-institutional registries,
and clinical trial repositories. Challenges:
missingness, variable measurement frequency,
censoring, selection bias, and treatment
assignment confounding. Preprocessing
includes harmonization of variable definitions,
time alignment, imputation strategies for
missing data, and creation of time-series
features.

4.2 Mechanistic and hybrid simulators
Simulators enable safe policy experimentation
and counterfactual evaluation. Options:
Mechanistic PK/PD models: well-established
for many chemotherapies; simulate drug
concentration-time profiles and toxicities.
Tumor growth models: e.g., exponential,
logistic, or agent-based tumor growth models
calibrated to patient-level data.

Hybrid simulators: combine mechanistic
submodels (PK/PD, tumor Kkinetics) with
stochastic patient-level variability (frailty terms)
and data-driven residual models learned from
observational data.

Calibration and validation against held-out
clinical datasets is mandatory.

4.3 Synthetic data generation

Generative models (e.g., variational
autoencoders, GANs, probabilistic graphical
models) can augment training data, preserving
privacy while providing diverse trajectories.
Synthetic data must be validated to ensure
distributional fidelity and not introduce artifacts.
5. Model Architectures and Algorithmic
Choices

5.1 Offline (batch) vs online learning

Offline RL: Learning from logged (historical)
datasets without active experimentation. This is
the most realistic initial setting for clinical
applications. Offline RL must contend with

distributional shift and limited support for optimal
actions in historical data. Algorithms: Batch-
constrained Q-learning (BCQ), Conservative Q-
learning (cqQvw), and other
conservative/regularized approaches mitigate
overestimation and covariate shift.

Online RL: Interactive learning in a live
environment or simulator; permits exploration
but requires safety constraints. In healthcare,
online learning is primarily applicable in
simulated environments or during carefully
controlled clinical trials.

5.2 Value-based, policy-gradient, and actor-
critic approaches

Value-based (DQN and variants): Suitable for
discrete action spaces; approximate the Q-
function using deep networks (Mnih et al.,
2015). Use double-Q, dueling architectures, and
prioritized replay to stabilize learning.
Policy-gradient / Actor-Critic (PPO, A3C,
DDPG, SAC): Handle continuous action spaces
and stochastic policies. Soft Actor-Critic (SAC)
is sample-efficient and stable for continuous
dosing. Proximal Policy Optimization (PPO)
offers robustness in policy updates.
Distributional RL and uncertainty-aware
methods: Learn full return distributions (e.g.,
C51, QR-DQN) to quantify risk and inform
conservative dose selection.

5.3 Representation learning for longitudinal
clinical data

Time-series encoders like recurrent neural
networks (GRU, LSTM), temporal convolutional
networks, and Transformer-based models can
encode patient histories. Incorporate time
embeddings and masking to account for
irregular  sampling. Multi-modal  fusion
integrates structured EHR data, imaging
features, and genomics.
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5.4 Model-based RL and planning
Model-based methods learn a transition model
and reward model to simulate counterfactual
trajectories and perform planning (e.g., MPC,
imagined rollouts). In oncology, integrating
mechanistic PK/PD models as priors in model-
based RL increases interpretability and sample
efficiency.

5.5 Causal and
considerations

Causal inference methods (propensity score
modeling, marginal structural models, structural
nested models) are critical to address
confounding in retrospective data and validate
learned  policies.  Counterfactual  regret
estimation and off-policy policy evaluation
(OPE) methods (importance  sampling,
weighted IS, doubly robust estimators) allow
estimation of policy value from historical logs.
6. Training Protocols and Practical
Considerations

6.1 Preprocessing and feature engineering
Time discretization aligned with clinical decision
frequency.

Feature normalization,
categorical variables.
Missing data imputation: use clinically-informed
methods (last observation carried forward
where appropriate), multiple imputation, or
model-based imputation using deep generative
models.

Construct history windows and summary
statistics (e.g., slopes of tumor markers).

6.2 Offline RL: mitigating distributional shift
Use conservative algorithms (CQL, BCQ) to
avoid overconfident extrapolation to actions not
present in the dataset.

counterfactual

embedding of

Regularize policies toward clinician behavior
(behavior cloning augmentation) to ensure
plausibility.

Use uncertainty-aware policies: e.g., ensemble
models, bootstrap ensembles, or Bayesian
neural networks to quantify epistemic
uncertainty.

6.3 Reward shaping and calibration
lteratively refine reward weights using clinician
inputs and retrospective simulations.

Ensure rewards are temporally consistent and
avoid perverse incentives.

Use multi-objective RL formulations or
scalarization to balance efficacy and safety.

6.4 Hyperparameter tuning and validation
Cross-validate via patient-based splits; avoid
time leakage.

Use multiple seeds and ensemble of models to
ensure robustness.

Evaluate sensitivity to reward weights, state
representations, and action discretization.

7. Evaluation: Offline and Prospective
Strategies

7.1 Offline evaluation metrics

Policy value estimates: Off-policy evaluation
(OPE) using weighted importance sampling,
per-decision IS, or doubly robust methods.
Clinical surrogate outcomes: simulated PFS,
tumor shrinkage rates, cumulative toxicity
incidence.

Safety metrics: rate of high-toxicity actions,
frequency of dosing outside standard-of-care
bounds.

Robustness metrics: performance under
domain shift (e.g., across molecular subtypes).
7.2 Simulation-based validation

Use validated simulators to run counterfactual
rollouts and compare policies under randomized
seeds and patient heterogeneity. Simulators
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permit stress-testing under rare but critical
scenarios (e.g., organ failure).

7.3 Retrospective clinician-in-the-loop
validation

Compare recommended actions to clinician
decisions in held-out datasets; use domain
experts to qualitatively assess policy plausibility.
Conduct case studies where policies suggest
divergent dosing to analyze rationale and
potential benefits/risks.

7.4 Prospective evaluation and clinical trials
Phase 0 / Feasibility studies: Evaluate safety
and clinician acceptance in small cohorts with
human oversight.

Randomized controlled trials (RCTs):
Compare DRL-guided dosing versus standard-
of-care or clinician-led dose selection for well-
defined indications. Trial design must consider
adaptive randomization, stopping rules, and
ethical oversight.

Pragmatic trials and registries: Post-
deployment monitoring using registries and real-
world evidence to evaluate long-term outcomes.
8. Safety, Interpretability, and Regulatory
Considerations

8.1 Safety-by-design

Constrain action spaces to clinically acceptable
doses.

Implement a safety filter: reject or flag any DRL-
proposed dose that violates predefined clinical
rules.

Use  conservative  policy  improvement
techniques that only propose actions near the
distribution of observed clinician actions until
safety is established.

8.2 Interpretability and explanations

Provide case-level explanations for dose
recommendations: feature attributions
(Integrated Gradients, SHAP), counterfactual

. Data collection: Assemble

examples (what-if analyses), and model-
agnostic surrogates (decision trees
approximating policy).

Present uncertainty estimates and confidence
intervals for proposed actions.

8.3 Human-in-the-loop and
workflows

Integrate recommendations as decision support
rather than autonomous dosing: present the top
k dose suggestions, rationale, key features
driving the recommendation, and safety alerts.
This respects clinician judgment and aids
acceptance.

8.4 Regulatory and ethical landscape
Regulatory agencies (FDA, EMA) require
evidence of safety, effectiveness, and post-
market surveillance for Al-enabled medical
devices. Establish a clinical evidence plan and
risk management documentation.

Ethical concerns: fairness across patient
subgroups, informed consent when using
adaptive  systems, transparency about
algorithmic limitations.

Data governance: ensure patient privacy,
appropriate data use agreements, and model
stewardship.

9. Case Study: Conceptual Example Pipeline
(This section outlines a full pipeline for a
hypothetical targeted therapy dose optimization
problem conceptual but detailed to guide
implementation.)

clinician

. Problem scope: Dose optimization for a

tyrosine kinase inhibitor (TKI) in metastatic
disease where therapeutic index varies across
patients and adverse events are dose-limiting.

multi-center
retrospective cohort including dosing records,
PK/PD measures, tumor response metrics,
toxicity grades, prior therapies, and genomics.
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. Simulator development: Build a hybrid PK/PD
+ tumor kinetics simulator calibrated to cohort
via hierarchical Bayesian inference. Validate
simulator by reproducing distributions of PFS
and cumulative toxicity in held-out patients.

. State representation: Use a time-aware
Transformer encoder over historical
observations enriched with static covariates and
posterior estimates from PK models.

. Action space: Discrete actions mapping to
multiples of the standard dose plus hold/reduce
actions.

. Reward function: Composite reward with
immediate penalties for grade =3 toxicities and
delayed rewards for tumor shrinkage and
simulated PFS.

. Algorithm: Offline DRL with Conservative Q-
Learning (CQL) using ensemble Q-networks for
uncertainty estimation and behavior-cloning
regularization to limit extrapolation.

. Validation:

OPE using doubly robust estimators on
historical logs.

Simulator rollouts across patient strata.
Clinician review of top divergent cases.

. Deployment pathway: Feasibility study with
human oversight -> pilot randomized study
comparing DRL-assisted dosing vs standard
guideline-based dosing with safety endpoints.
This pipeline highlights the interplay among
mechanistic modeling, conservative offline RL,
and staged validation required for a credible
translational project.

10. Limitations and Open Challenges
Causal confounding in observational data:
Incomplete adjustment can bias policy learning.
Integration of causal inference methods is
crucial but nontrivial.

. Prioritize safety and

Sparse and delayed outcomes: Long-horizon
endpoints and censoring complicate credit
assignment; proxies and intermediate
biomarkers help but may not fully capture long-
term effects.

Limited action coverage in historical logs:
Offline learning is constrained by the diversity of
actions in the dataset; conservative algorithms
mitigate but do not eliminate this limitation.
Simulator fidelity: Simulators are
approximations; policies valid in silico may fail in
vivo. Demand rigorous calibration and
transparent uncertainty quantification.

Ethical and social considerations:
Algorithmic bias, patient autonomy, and clinician
acceptance require ongoing stakeholder
engagement.

Computational and data requirements: High-
quality multi-modal data and compute resources
are needed; resource constraints may limit
generalizability.

11. Recommendations and Best Practices

. Start with conservative offline RL: Use CQL-

style. methods and behavior cloning
regularization when learning from retrospective
EHRs.

. Incorporate mechanistic knowledge: Use

PK/PD and tumor kinetics as priors or building
blocks in model-based RL.

. Design clinically meaningful rewards: Co-

design reward functions with oncologists and
iterate using sensitivity analysis.
interpretability:
Implement action constraints, uncertainty
quantification, and human-in-the-loop
workflows.

. Use validated simulators: For stress-testing

and prospective trial design, ensure simulators
reproduce real-world distributions.
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6. Adopt robust evaluation: Combine OPE,

simulator rollouts, clinician review, and
ultimately prospective studies.

development and
governance: Maintain reproducible pipelines,
versioning, and audit trails to satisfy regulatory
and ethical requirements.

12. Discussion

DRL has the potential to transform oncology
dosing by enabling individualized, adaptive, and
temporally-aware policies that optimize long-
term patient outcomes. The methodological
toolbox  offline DRL, model-based planning,
uncertainty-aware  policies, and  causal
inference offers a pathway to safe and effective
decision support. However, substantial work
remains in data curation, simulator fidelity,
evaluation methodologies, and practical
integration into clinician workflows. The
translational path requires careful staging:
rigorous offline validation, simulator-based
safety testing, small feasibility studies, and well-
designed randomized trials. Multidisciplinary
collaboration among oncologists,
pharmacologists, data scientists, and regulatory
experts is indispensable.

13. Conclusion

This article provides a comprehensive,
academically rigorous, and practically oriented
blueprint for developing deep reinforcement
learning systems for personalized dose
optimization in oncology. By combining
theoretical underpinnings, domain-specific
modeling, and a conservative translational
approach emphasizing safety, interpretability,
and clinical validation, researchers can
responsibly explore the potential of DRL in
cancer treatment. Future work should focus on
constructing high-fidelity simulators, integrating

causal discovery methods, and executing
prospective clinical evaluations that
demonstrate improved patient-centered
outcomes.
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