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Abstract 
We propose and analyze a hybrid paradigm that 
integrates Reinforcement Learning (RL) with Quantum 
Optimization (QO) methods for dynamic portfolio 
management. The approach leverages RL to learn 
policy structure and market-timing signals, while 
delegating discrete, combinatorial, and constrained 
subproblems (e.g., cardinality-constrained selection, 
rebalancing under transaction limits) to quantum 
optimization engines such as Quantum Approximate 
Optimization Algorithm (QAOA), Variational Quantum 
Eigensolver (VQE), and quantum annealers via 
QUBO/HUBO encodings. We develop the theoretical 
mapping from portfolio selection and rebalancing into 
Markov Decision Processes (MDPs) and Quadratic 
Unconstrained Binary Optimization (QUBO) / Higher-
Order Binary Optimization (HUBO) problems, present 
algorithmic architectures for hybrid training and 
execution, and provide reproducible experimental 
protocols for benchmarking against classical 
baselines. We review the state of the art in RL for 
finance and quantum optimization for combinatorial 
finance tasks, and we empirically motivate the design 
choices using recent studies that benchmark quantum 
heuristics on portfolio problems. Our results and 
analysis articulate where hybrid RL–QO can offer 
practical advantages in near-term noisy intermediate-
scale quantum (NISQ) environments, what constraints 
limit current applicability, and a road map for industrial 
deployment in asset management and robo-advisory 
contexts. 

Keywords: Quantum optimization, Reinforcement 
Learning, Portfolio optimization, QUBO, QAOA, VQE, 
hybrid quantum-classical, NISQ, dynamic allocation 

1. Introduction 

Modern portfolio management combines statistical 
estimation, optimization under constraints, and 
sequential decision-making in uncertain markets. 
Since Markowitz introduced mean–variance 
optimization (MVO) as a formal framework for portfolio 
selection, the field has extended to incorporate risk 
measures, transaction costs, and dynamic rebalancing 
strategies (Markowitz, 1952).  

Computationally, many practical constraints 
cardinality, minimum-lot sizes, nonlinear transaction 
costs, and regulatory or fund-specific limits render 
portfolio optimization NP-hard or combinatorially 
difficult; exact solutions often require mixed-integer 
programming or tailored heuristics. Quantum 
optimization methods (quantum annealing, QAOA, 
VQE) can naturally encode such discrete constraints 
as Ising/QUBO problems and have been explored 
experimentally for finance problems including portfolio 
optimization; recent benchmark studies and practical 
experiments demonstrate both promise and the 
current hardware limits of these approaches.  

Concurrently, Reinforcement Learning (RL)   
particularly deep RL   has emerged as a powerful 
methodology for sequential portfolio management and 
automated trading, providing model-free strategies 
that learn allocation policies from raw market data and 
reward signals (e.g., wealth growth, risk-adjusted 
returns) without explicit forecasting models. The 
seminal deep RL portfolio work and subsequent 
developments show that RL can offer robust, adaptive 
policies for dynamic allocation. (arXiv) 

This paper brings these threads together. We propose 
a hybrid architecture in which an RL agent learns high-
level, continuous control and market-response 
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policies, while quantum optimizers tackle discrete 
allocation subproblems and constrained combinatorial 
rebalancing (e.g., choose K out of N assets to 
rebalance, or mapping fractional allocations to trade 
orders under discrete lot sizes). By combining RL’s 
adaptability with QO’s native discrete optimization 
strengths, the paradigm aims to: (i) improve solution 
quality for constrained rebalancing; (ii) reduce 
computation time for specific NP-hard subproblems (in 
regimes where quantum advantage may be 
achievable); and (iii) provide a practical transition path 
for asset managers to exploit near-term quantum 
hardware via hybrid workflows. Recent surveys and 
benchmarks of quantum reinforcement learning and 
quantum optimization provide technical foundations 
and empirical evidence for this direction. 

In what follows we present: background theory; formal 
problem statements; method design and algorithms; 
experimental design and evaluation metrics; 
discussion on implementation, robustness, and 
regulatory considerations; and a roadmap for research 
and industry adoption. 

2. Background and Related Work 

2.1 Classical portfolio theory and computational 
challenges 

Markowitz’s mean–variance framework formulates 
portfolio selection as an optimization of expected 
return against variance (risk) under linear budget 
constraints. In continuous allocation form, for weights 
(w\in\mathbb{R}^N): 

[ 
\begin{aligned} 
\min_{w} \quad & w^\top \Sigma w - \lambda, w^\top 
\mu \ 
\text{s.t.} \quad & \mathbf{1}^\top w = 1,\quad w_i \ge 
0 ;(\text{if no shorting}), 
\end{aligned} 
] 

where (\Sigma) is the covariance matrix, (\mu) the 
expected returns vector, and (\lambda) the risk–return 

trade-off. While the continuous MVO problem is 
tractable, introducing real-world integer constraints 
(cardinality, minimum-lot sizes), nonlinear transaction 
costs, and regime-dependent constraints converts the 
problem into a combinatorial optimization, often 
expressed as Mixed-Integer Quadratic Programming 
(MIQP). These versions are NP-hard and motivate 
heuristic and specialized methods. (Markowitz, 1952).  

2.2 Reinforcement learning for portfolio 
management 

RL casts portfolio management as an MDP: states 
encode market observables and portfolio holdings, 
actions change allocations or trade orders, and 
rewards align with investment objectives (e.g., log-
return, Sharpe-ratio proxies, or more sophisticated 
utility measures). Deep RL agents (policy/value-
function approximators) have been demonstrated to 
learn effective strategies for sequential allocation, 
including notable architectures like the EIIE topology 
and actor–critic variants, and task-specific algorithms 
addressing transaction costs and market 
microstructure. (Jiang et al., 2017; Yang, 2023). (arXiv) 

Major challenges for RL in finance include: sample 
efficiency (markets are nonstationary and data-
limited), overfitting/backtest over-optimism, partial 
observability, reward sparsity, and safety/regulatory 
constraints during live deployment. Strong evaluation 
protocols (walk-forward testing, out-of-sample 
robustness checks, bootstrapped statistical testing) 
are essential to validate RL policies. 

2.3 Quantum optimization methods relevant to 
finance 

Quantum optimization approaches relevant for 
portfolio tasks include: 

 Quantum Annealing (QA): hardware such as 
D-Wave implements QA to find low-energy 
states of Ising Hamiltonians; mapping discrete 
portfolio problems to Ising/QUBO is 
straightforward and has been demonstrated for 
small-to-moderate instance sizes.  
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 Quantum Approximate Optimization 
Algorithm (QAOA): a gate-based variational 
algorithm that alternates between cost and 
mixer Hamiltonians to sample low-energy 
states; QAOA is suited to combinatorial 
problems encoded as QUBO/Hamiltonian 
minimization and has been applied to 
knapsack- and portfolio-like problems.  

 Variational Quantum Eigensolver (VQE): 
originally for chemistry, VQE has been used in 
finance by encoding cost functions into 
Hamiltonians and optimizing parameterized 
circuits to minimize expected cost on quantum 
devices; practical experiments have been 
performed on IBM devices for small-size 
portfolio instances. 

Recent benchmarks compare QAOA, QA, and 
classical heuristics across many portfolio instances 
and identify regimes where quantum methods are 
competitive (but also note hardware scaling and noise 
limitations). These works form the empirical foundation 
for hybrid architectures. 

2.4 Quantum reinforcement learning (QRL) 

Quantum reinforcement learning explores two families: 
(i) quantum-assisted RL, where variational quantum 
circuits (VQCs) or quantum subroutines serve as 
function approximators inside classical RL pipelines; 
and (ii) fully quantum RL, which seeks to quantize the 
MDP or RL algorithms themselves (e.g., amplitude-
amplification-based exploration or oracularized 
environments). Surveys and theoretical works show 
potential algorithmic advantages (sometimes 
provable) but caution that most algorithms presuppose 
future fault-tolerant hardware; nevertheless, NISQ-
compatible VQC approaches are being experimentally 
studied. 

3. Problem Formulation 

We consider dynamic multi-asset portfolio 
management with (N) tradable assets, discrete 
rebalancing epochs (t=0,1,\dots,T), and state (s_t) 

containing observable market features (prices, returns, 
technical indicators), current holdings (h_t), and 
portfolio cash (c_t). An RL policy (\pi_\theta(a_t|s_t)) 
outputs an action (a_t) which may be either: 

1. Continuous allocation: target weights 
(\tilde{w}_t \in \Delta^{N}) (the probability 
simplex), or 

2. Discrete trading decision: a combinatorial 
selection (e.g., choose up to K assets to 
buy/sell) and discrete lot sizes. 

We explicitly handle hybrid action spaces by 
decomposing actions into a continuous high-level 
decision from RL and a discrete low-level 
combinatorial resolution performed by QO: 

 RL determines a desired allocation vector 
(\tilde{w}_t) or a target profile (P_t) (e.g., 
“increase exposure to tech by x%”), together 
with constraints (cardinality K, cash budget, 
maximum transaction volume). 

 A quantum optimizer solves the constrained 
rounding/selection problem: given continuous 
targets (\tilde{w}_t) and constraints, find 
discrete trade orders (d_t \in {0,1,\ldots,L}^N) 
that minimize a cost function combining 
deviation from (\tilde{w}_t), transaction costs, 
and risk penalties. 

3.1 QUBO encoding for discrete rebalancing 

A typical QUBO objective for a discretized rebalancing 
problem can be written as: 

[ 
\min_{x\in{0,1}^{mN}} ; x^\top Q x + q^\top x, 
] 

where (x) is a binary encoding of discrete decision 
variables (e.g., one-hot encodings for lot choices, or 
binary expansion of integer counts), (Q) captures 
quadratic terms encoding portfolio variance, pairwise 
asset interactions, and convexified risk objectives, and 
(q) encodes linear penalties for deviation and 
transaction costs. Penalty terms enforce budget and 
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cardinality constraints via large diagonal penalties or 
parity encodings (parity encodings can reduce qubit 
overhead for certain constraint patterns). The mapping 
and penalty-scaling strategy must be tuned carefully to 
balance objective vs. constraint satisfaction. Practical 
examples and encoding strategies are described in the 
literature.  

4. Hybrid RL–Quantum Architecture 

4.1 High-level design 

We propose the following modular architecture: 

1. Market encoder (Feature extractor): classical 
deep network (CNN/Transformer/time-series 
embedding) converts raw market data and 
microstructure signals into latent state (z_t). 

2. High-level RL agent: receives (z_t) and 
outputs a continuous target allocation 
(\tilde{w}_t) and constraint parameters 
(\mathcal{C}_t) (e.g., permissible transaction 
budget, cardinality K). The agent may be an 
actor–critic (e.g., SAC, PPO) tailored to 
financial rewards. 

3. Quantum optimizer (QO) module: takes 
(\tilde{w}_t) and (\mathcal{C}_t) and solves a 
QUBO/HUBO instance to produce discrete 
trades (d_t). Depending on hardware 
availability, QO can be executed on: 

o quantum annealer (D-Wave), or 

o gate-based QPU with QAOA/VQE, or 

o classical QUBO solver (simulated 
annealing, tabu search) as a fallback. 

4. Execution & ledger: apply trades (d_t) to 
update holdings to (h_{t+1}), track transaction 
costs, slippage, and update reward. 

5. Learning loop: RL agent is trained off-policy or 
on-policy. The quantum module can be invoked 
during training (costly) or replaced by a 
classical surrogate for 
gradient/backpropagation steps; alternately the 

QO is called intermittently to update a discrete-
action buffer. 

Figure placeholders: (Figure 1: system diagram of 
hybrid RL–QO. Figure 2: QUBO encoding pipeline.) 

4.2 Training paradigms 

Two training paradigms are viable: 

 Offline pretraining + online hybrid 
adaptation: Pretrain RL agent with classical 
surrogate optimizers (fast QUBO 
approximations), then switch to quantum 
module for online selection/testing. This 
reduces QPU usage during heavy gradient-
based training. 

 End-to-end hybrid training: Incorporate the 
quantum optimizer in the loop during RL 
training. Since quantum outputs are 
nondifferentiable with respect to parameters, 
gradient estimation uses REINFORCE-style 
policy gradients or straight-through surrogates; 
alternatively, differentiate through a 
differentiable relaxation (continuous 
relaxations of binary variables) during 
backprop and use QO only for execution. 

We recommend a hybrid approach: RL learns coarse-
grained control and risk-sensitivity; QO solves discrete 
rounding and constraint satisfaction. For experimental 
reproducibility, both variants should be evaluated. 

4.3 Reward engineering 

The reward (r_t) must reflect investment objectives: 

[ 
r_t = \alpha \Delta \log W_t - \beta \cdot 
\text{TransactionCost}(d_t) - \gamma \cdot 
\text{RiskPenalty}(h_{t+1}), 
] 

where (\Delta \log W_t) is log-wealth change, and 
(\alpha,\beta,\gamma) balance return, cost discipline, 
and risk control. Risk penalty can be realized as rolling 
volatility, drawdown (max DD), or CVaR (conditional 



 Page 27 of 32 
 

 

 
 
Global Journal of Intelligent Technologies                                                                                       (Volume III, Issue I, 2025) 

value-at-risk) proxies. Reward shaping is crucial to 
ensure agent conservatism and to avoid overtrading   a 
common pitfall in RL trading. 

5. Theoretical Foundations 

5.1 MDP and policy optimization foundations 

We consider an MDP 
((\mathcal{S},\mathcal{A},P,R,\gamma)) and 
parametric policy (\pi_\theta). Policy optimization 
seeks (\theta^\ast) maximizing expected discounted 
return (J(\theta)=\mathbb{E}\left[\sum_{t=0}^\infty 
\gamma^t r_t \right]). Actor–critic, PPO, SAC, and 
distributional RL are relevant algorithmic choices 
depending on continuous/discrete hybrid action 
spaces. 

In hybrid RL–QO, the effective action mapping 
becomes stochastic due to quantum sampling noise 
and measurement outcomes; the effective transition 
kernel (P) must incorporate this stochasticity. The 
theoretical analysis of convergence in presence of 
nondifferentiable or nondeterministic low-level solvers 
follows from stochastic approximation frameworks and 
off-policy learning stability criteria. 

5.2 Quantum optimization complexity and 
encoding 

Mapping an integer-constrained portfolio rebalancing 
into QUBO introduces a quadratic objective and 
penalty terms. The resulting QUBO matrices (Q) can 
be dense (pairwise interaction among assets). For an 
(N)-asset problem with (b) binary bits per asset (for 
integer counts), the qubit count scales as (N \cdot b). 
Parity encodings and problem decomposition 
strategies can reduce qubit overhead at the cost of 
increased circuit or annealer embedding complexity 
(embedding overhead on hardware graphs). Encoding 
choices and embedding overhead are a major 
engineering trade-off in practice. Empirical studies 
show that QAOA and VQE can find high-quality 
solutions for small-to-moderate instances, and 
quantum annealers have been used on real market 

indices; however, scaling and noise require careful 
consideration.  

5.3 When can quantum methods help? 

Theoretical quantum advantage claims hinge on 
identifying problem instances for which quantum 
sampling or amplitude amplification yields asymptotic 
speedups or better approximation ratios. Some QRL 
and quantum optimization papers prove improved 
regret bounds or exponential improvements under 
specific oracular models; practical advantage for real-
world finance problems remains conditional on 
hardware and instance structure. Comprehensive 
benchmarking is thus critical; recent large-scale 
benchmark studies compare QAOA/QA to classical 
heuristics across many real-data portfolio instances 
and provide nuanced perspectives on advantage 
regimes.  

 

6. Algorithms and Pseudocode 

Below we present pseudocode for a practical hybrid 
RL–QO training and execution loop. 

Algorithm 1: Hybrid RL–Quantum Portfolio Agent 
(training + deployment) 

Inputs: historical data D, initial policy parameters θ0, 
quantum optimizer QO (config),  

        replay buffer B (optional), training epochs E 

 

for epoch = 1..E: 

    for each training episode using D: 

        reset environment -> state s0 

        for t = 0..T_episode: 

            z_t = FeatureEncoder(s_t) 

            (tilde_w_t, C_t) = PolicyActor(θ, z_t)     # 
continuous target and constraints 
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            QUBO = BuildQUBO(tilde_w_t, C_t)          # 
encode discrete rebalancing 

            x_star = QO.solve(QUBO)                   # quantum 
or classical solver 

            action a_t = Decode(x_star)               # discrete 
trade orders 

            s_{t+1}, r_t = EnvironmentStep(s_t, a_t) 

            store transition (s_t, a_t, r_t, s_{t+1}) in B 

            if training_condition: 

                update θ via RL update using transitions 
(policy gradient / critic) 

        end for 

    end for 

    evaluate policy on hold-out validation period 

    if performance improved: 

        optionally checkpoint model and QO 
hyperparams 

end for 

Practical implementation must handle asynchronous 
quantum calls, latency, and nondifferentiability. For 
rapid development, runtime QO calls can be simulated 
with classical QUBO solvers and replaced with real 
QPU calls during offline evaluation. 

 

7. Experimental Design and Evaluation 

7.1 Datasets and experimental protocol 

We recommend an evaluation protocol combining: 

 Synthetic market scenarios with controlled 
properties (mean-reverting regimes, trending 
regimes, regime switches) to stress-test 
learning adaptability. 

 Historical market data: e.g., S&P 500 
constituents, sector indices, ETF baskets, and 

alternative assets, sampled at the chosen 
rebalancing frequency (daily/weekly). Use 
high-quality data sources (e.g., CRSP, TAQ for 
microstructure tests) and explicit 
train/validation/test split with walk-forward 
evaluation. 

 Transaction cost model: fixed fees + 
proportional slippage + market impact 
emulators to ensure realistic trading frictions. 

7.2 Baselines 

Compare against: 

1. Static mean–variance optimal rebalancing 
(continuous MVO). 

2. Classical combinatorial solver + heuristic 
rounding (simulated annealing, tabu search). 

3. Pure RL policy with standard rounding 
heuristics (no quantum module). 

4. Hybrid RL–QO with classical QUBO solver 
(ablation to isolate quantum hardware effects). 

5. Hybrid RL–QO with QPU (where available). 

7.3 Metrics 

 Performance: cumulative return, annualized 
return. 

 Risk-adjusted: annualized volatility, Sharpe 
ratio, Sortino ratio, maximum drawdown, CVaR 
at 95%. 

 Operational: number of transactions, turnover, 
average transaction cost, latency. 

 Computational: wall-clock time to solution per 
rebalancing decision (quantum vs classical), 
energy/compute cost where measurable. 

 Robustness: out-of-sample performance 
across market regimes, sensitivity to reward 
and penalty coefficients. 
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8. Representative Numerical Results and 
Benchmarking (Template & Expected Findings) 

Note: This manuscript provides a fully specified 
experimental protocol and reports 
expected/representative findings based on literature 
benchmarks and preliminary studies rather than novel 
empirical runs on QPU hardware in this draft 
submission. Reproducible code and datasets will be 
supplied in the supplementary repository. 

Recent benchmark studies indicate that QAOA, 
QUBO-based annealing, and VQE can achieve high-
quality approximations of constrained portfolio 
optimizations on small-to-moderate instance sizes and 
that hybrid architectures can match or slightly 
outperform classical heuristics in specific problem 
regimes, though scalability and noise remain limiting 
factors. For example, empirical experiments using IBM 
devices and QAOA/VQE demonstrate feasibility on 
tens of assets with coarse discretization, while 
annealers have been used on S&P500 subsets for 
cardinality-constrained optimization (Buonaiuto et al., 
2023; Phillipson et al., 2021). Large-scale 
benchmarking across many instances has been 
pursued to identify regimes where quantum heuristics 
show comparative strengths.  

Expected experimental observations in the hybrid RL–
QO paradigm: 

 Quality of discrete rounding: QO-based 
rounding often yields closer adherence to 
continuous targets while respecting discrete 
constraints compared to naïve rounding or 
greedy heuristics, resulting in lower tracking 
error and fewer unnecessary trades. 

 Turnover management: The QO objective 
can include explicit turnover penalties, leading 
to sparser trades and lower transaction costs 
beneficial in real trading. 

 Latency trade-offs: For time-sensitive 
intraday strategies, QPU latency and job-
queue times can be prohibitive; hybrid 

architectures are therefore best suited for end-
of-day or intra-day strategies with relaxed 
latency constraints. 

 Robustness: Policies trained with robust 
reward shaping and realistic costs generalize 
better; quantum modules must be parameter-
tuned to avoid overfitting to small-scale training 
instances. 

These expectations align with literature benchmarking 
that compares QAOA/VQE/QA to classical heuristics 
on portfolio problems.  

9. Practical Implementation Considerations 

9.1 Hardware options and orchestration 

 Quantum annealers (D-Wave): natural for 
QUBO; good for proof-of-concept and certain 
constrained formulations. Embedding and 
chain strength tuning are nontrivial. 

 Gate-based NISQ QPUs (IBM, Rigetti, IonQ, 
etc.): suitable for QAOA/VQE; require careful 
circuit design and error mitigation. VQE has 
been experimentally used for portfolio 
instances on IBM hardware. 

 Classical fallback: always maintain a high-
quality classical QUBO solver for reliability and 
benchmarking. 

Hybrid orchestration must handle job submission, 
asynchronous returns, and fallback strategies. 
Latency-aware batching and precomputation of QUBO 
variants can mitigate real-time latency. 

9.2 Engineering challenges 

 Scaling and embedding: practical qubit 
counts and hardware topologies limit problem 
sizes; encoding, decomposition, and problem 
partitioning are necessary for industrial-scale 
baskets. 

 Noise and variability: quantum sampling is 
stochastic and noisy ensemble strategies and 
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repeated sampling reduce variance; integrate 
robust statistical postprocessing. 

 Cost: QPU access cost vs classical compute 
cost must be balanced; evaluate computed 
value added relative to premium access costs. 

9.3 Regulatory and operational risk 

Deploying RL-driven trading systems subject to fund 
regulations, best execution obligations, and 
operational risk frameworks. Quantum-enabled 
decision-making introduces new auditability questions: 
how to explain quantum-derived allocations and verify 
constraint satisfaction. Maintain deterministic 
fallbacks, rigorous logging, and conservatism tests for 
live deployment. 

10. Robustness, Interpretability, and Risk 
Management 

10.1 Robustness to market regime shifts 

Robust RL training should include diverse market 
regimes and stress scenarios. Model ensembles and 
conservative policy selection (e.g., percentile-based 
policy selection) can reduce catastrophic performance 
under rare shocks. 

10.2 Interpretability 

Explainable outputs are crucial for practitioner 
adoption. For the hybrid system: 

 Provide allocation attribution: break down 
why the RL agent suggested a target and which 
quantum constraints changed the discrete 
outcome (e.g., indicator that “cardinality 
constraint K=10 forced exclusion of asset X 
due to high covariance with existing positions”). 

 Log QUBO solution statistics: energy, 
constraint violation, sample diversity. 

 Use counterfactuals: simulate “what-if” 
scenarios showing alternate QUBO solutions 
under varying penalties. 

10.3 Model risk and validation 

Backtesting must be complemented by model risk 
controls: statistical significance testing, slippage 
sensitivity, adversarial stress tests, and in-production 
shadow trading before full trade execution. 

11. Limitations and Future Work 

Limitations include: 

 Hardware constraints: current NISQ devices 
and annealers limit usable problem sizes, and 
scaling to large asset universes remains an 
engineering challenge. 

 Latency: quantum job latency can preclude 
low-latency trading strategies. 

 Theoretical guarantees: provable quantum 
advantage for general portfolio instances is 
unresolved; advantage may be instance-
specific. 

Future work: 

 Hybrid decomposition schemes that partition 
a large portfolio into interacting subproblems 
amenable to separate QPU solves, combined 
by classical coordination. 

 Differentiable surrogate QUBOs enabling 
tighter end-to-end training between RL and QO 
modules. 

 Hardware-in-the-loop studies comparing 
QPU vs classical solvers on institutional-size 
datasets and cost models. 

 Regulatory frameworks for auditability and 
governance of quantum-assisted investment 
strategies. 

12. Conclusions 

We introduced a hybrid paradigm integrating 
reinforcement learning and quantum optimization for 
dynamic portfolio management. By delegating discrete 
constrained subproblems to quantum optimizers while 
using RL for adaptive continuous control, the 
architecture aims to provide improved discrete 



 Page 31 of 32 
 

 

 
 
Global Journal of Intelligent Technologies                                                                                       (Volume III, Issue I, 2025) 

allocation quality under real-world constraints and to 
open practical pathways for asset managers to 
experiment with near-term quantum hardware. 
Benchmarks and surveys suggest the approach is 
promising for certain problem regimes, but practical 
adoption depends on hardware progress, embedding 
strategies, and rigorous risk management processes. 
We provide an experimental protocol, algorithmic 
primitives, and a roadmap for future research and 
deployment. 
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