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Abstract 
Customer Lifetime Value (CLV) is a central metric in e-
commerce for acquisition budgeting, personalization, 
retention, and strategic planning. Classical statistical 
and probabilistic models (e.g., Pareto/NBD, BG/NBD) 
provide principled baselines but struggle with high-
dimensional covariates, nonstationary behavior, and 
counterfactual questions required for causal 
decisioning. Deep learning has recently delivered 
substantial gains in CLV point and distributional 
prediction at industrial scale by integrating 
representation learning, sequence models, and 
distributional heads; however, purely predictive models 
risk conflating correlation with causation when used to 
inform interventions (promotion allocation, pricing, 
retention offers). In this article we propose a rigorous, 
production-ready framework that fuses state-of-the-art 
deep learning architectures for CLV (sequential 
encoders, attention/Transformers, 
mixture/distributional output layers) with modern 
causal inference techniques (potential outcomes, 
double/debiased machine learning, causal forests, 
representation learning for counterfactuals) to deliver 
accurate, robust, and actionable CLV estimates for e-
commerce. We provide formal problem statements, 
architecture blueprints, objective functions, validation 
protocols (temporal cross-validation, backtest, uplift 
evaluation), and risk/ethical governance guidance. We 
demonstrate how probabilistic deep CLV models (e.g., 
zero-inflated / mixture output, heteroskedastic heads) 
can be combined with causal estimators (double ML, 
causal forests, learned balanced representations) to 
produce both predictive scores and valid estimates of 
causal effects of marketing actions on CLV   enabling 
prescriptive decisioning with sound uncertainty 
quantification. We ground our design choices in the 
literature and present a reproducible experimental 

protocol and evaluation suite for industry 
benchmarking. 

Keywords: Customer Lifetime Value (CLV), deep 
learning, causal inference, double machine learning, 
causal forests, sequence models, survival analysis, 
distributional prediction, e-commerce 

1. Introduction 

Estimating the value a customer will generate over 
their lifetime CLV is one of the most consequential 
predictive tasks in e-commerce. Accurate CLV models 
inform acquisition spend, personalized promotions, 
segmentation, churn mitigation, inventory and supply 
planning, and long-term strategy (e.g., which cohorts 
to prioritize). Classical CLV methods (behavioral 
probabilistic models and rule-based approaches) 
provide interpretability and tractable uncertainty 
quantification for simple transactional data, but modern 
e-commerce generates high-dimensional, multimodal 
data (clickstream, product views, text, returns, session 
behavior, ads exposure) and acts on customers 
(offers, price changes)  which both necessitate flexible 
predictive models and demand a causal perspective 
for decisioning. SSRN+1 

This paper develops a unified framework that (i) 
leverages deep learning to model complex, 
nonstationary customer behavior for CLV prediction, 
(ii) incorporates causal inference methods to identify 
the effect of interventions (e.g., coupons, retargeting) 
on CLV, and (iii) provides practical guidance for 
deployment and governance in e-commerce settings. 
We emphasize reproducible experimental design, 
robust evaluation (including uplift and offline policy 
evaluation), and auditability all essential for production 
systems that will be used to execute financial 
decisions. 
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In Section 2 we survey relevant literature spanning 
classical CLV, deep learning methods, and causal 
inference for treatment effect estimation. Section 3 
formalizes the CLV estimation and decision problem. 
Section 4 describes modeling architectures and loss 
functions for predictive and distributional CLV. Section 
5 integrates causal estimators (double/debiased 
machine learning, causal forests, representation 
learning for counterfactuals) into the modeling pipeline. 
Section 6 details evaluation methodology and 
robustness checks. Section 7 discusses practical 
productionization, interpretability, and governance. 
Section 8 presents limitations and research directions; 
Section 9 concludes. 

2. Related Work 

2.1 Probabilistic and statistical CLV models 

Early probabilistic approaches model repeat purchase 
behavior and dropout explicitly (Pareto/NBD; BG/NBD) 
and estimate expected future transactions from 
recency/frequency/monetary (RFM) statistics; these 
methods remain important baselines because of 
interpretability and closed-form properties in many 
settings. Fader, Hardie, and Lee (2005) present the 
BG/NBD model as an accessible alternative to the 
Pareto/NBD framework with robust empirical 
performance in many retail contexts.  

2.2 Machine learning and deep learning for CLV 

From the 2010s onward, machine learning (gradient-
boosted trees, ensembles) became competitive with 
parametric CLV models by effectively handling many 
engineered features. In the late 2010s and 2020s deep 
learning approaches (sequence encoders, 
embeddings, mixture output heads) have shown 
superior performance for complex, high-cardinality e-
commerce data; examples include deep probabilistic 
CLV models that model zero-inflation and heavy tails 
with mixture losses, and industrial systems that scale 
to billions of users (e.g., Kuaishou’s industrial solution, 
perCLTV for games). These works demonstrate that 
neural architectures  with careful distributional heads 

and domain-specific inductive biases  can deliver both 
accuracy and deployability at scale.  

2.3 Causal inference and machine learning 

The potential outcomes (Rubin) and structural causal 
model (Pearl) formalisms provide the foundations for 
causal claims and counterfactual reasoning; modern 
machine learning tools have been incorporated into 
causal estimation via double/debiased machine 
learning and tree-based heterogeneous treatment 
effect estimators (e.g., causal forests). Chernozhukov 
et al. (2017/2018) propose Double/Debiased Machine 
Learning (DML) to obtain √n-consistent estimates of 
treatment effects in the presence of high-dimensional 
nuisance components estimated by ML; Wager & 
Athey (2018) develop causal forests to estimate 
heterogeneous treatment effects with valid inference. 
Representation learning approaches (e.g., Johansson, 
Shalit & Sontag, 2016) adapt neural nets to produce 
balanced representations for counterfactual inference 
in high-dimensional observational data. 
arXiv+2arXiv+2 

2.4 Hybrid predictive-causal CLV 

Recent literature increasingly recognizes that point-
predictive models are insufficient when used to support 
intervention decisions  one must separate predictive 
accuracy from causal identifiability. Hybrid pipelines 
that combine expressive prediction models with causal 
estimators (e.g., using powerful feature learners inside 
double ML or causal forests) produce both accurate 
CLV forecasts and valid treatment effect estimates, 
enabling uplift optimization and prescriptive policies. 
This manuscript synthesizes these threads, focusing 
on architecture, objectives, and evaluation tailored to 
e-commerce. 

3. Problem Statement and Formal Setup 

We consider a merchant with customers indexed by 
i=1,…,ni=1,\dots,ni=1,…,n. For each customer we 
observe a history up to time t0t_0t0: 

 Transactional sequence 
Xi={(ti,k,pi,k,qi,k,ci,k)}k=1KiX_i = \{(t_{i,k}, 
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p_{i,k}, q_{i,k}, c_{i,k})\}_{k=1}^{K_i}Xi={(ti,k
,pi,k,qi,k,ci,k)}k=1Ki where ttt is timestamp, ppp 
product, qqq quantity, ccc price/revenue. 

 Session/clickstream sequences SiS_iSi (page 
views, dwell, categories). 

 Static covariates ZiZ_iZi (demographics, 
acquisition channel). 

 Past marketing exposures 
Ai(0:t0)A_i^{(0:t_0)}Ai(0:t0) (treatment history: 
coupons, ads, emails). 

 Observed outcomes: cumulative realized 
revenue up to t0t_0t0, and any labeled churn 
indicators. 

Objective (Predictive CLV): Estimate 
CLV^i(τ∣Hi,t0)\widehat{\mathrm{CLV}}_i(\tau \mid 
\mathcal{H}_{i,t_0})CLVi(τ∣Hi,t0), the expected 
discounted future revenue from t0t_0t0 to 
t0+τt_0+\taut0+τ conditional on observed history 
Hi,t0\mathcal{H}_{i,t_0}Hi,t0. 

Objective (Causal CLV / Uplift): Estimate the causal 
effect on CLV of a candidate intervention ddd (e.g., 
sending coupon ddd at time t0t_0t0): 

Δi(d)≡E[CLVi(τ)∣do(Ai,t0=d),Hi,t0−A]−E[CLVi(τ)∣do(Ai,t
0=d0),Hi,t0−A],\Delta_{i}(d) \equiv \mathbb{E}[ 
\mathrm{CLV}_i(\tau) \mid \mathrm{do}(A_{i,t_0}=d), 
\mathcal{H}_{i,t_0}^{-A} ] - \mathbb{E}[ 
\mathrm{CLV}_i(\tau) \mid 
\mathrm{do}(A_{i,t_0}=d_0), \mathcal{H}_{i,t_0}^{-A} 
],Δi(d)≡E[CLVi(τ)∣do(Ai,t0=d),Hi,t0−A]−E[CLVi
(τ)∣do(Ai,t0=d0),Hi,t0−A],  

where H−A\mathcal{H}^{-A}H−A denotes history 
excluding the action at t0t_0t0, and d0d_0d0 is 
baseline (no action). Valid estimation requires 
ignorability assumptions (or instruments / experiment 
design) or robust semiparametric methods (e.g., DML) 
when ignorability is plausible conditional on 
observables. 

We target two outputs: 

1. A probabilistic predictive distribution 
F^i(y)\hat{F}_i(y)F^i(y) for future revenue (point 
estimate + calibrated uncertainty). 

2. An estimator of individualized treatment effects 
(ITE) Δ^i(d)\widehat{\Delta}_i(d)Δi(d) (with 
confidence intervals) to support decisioning 
(who to treat, how much to offer). 

4. Modeling: Deep Predictive Architectures for CLV 

This section details candidate architecture and loss 
formulations for CLV prediction in e-commerce. 

4.1 Input representation and embedding 

 Entity embeddings: high-cardinality 
categorical features (product IDs, category, 
campaign id) encoded as learned embeddings. 

 Temporal encodings: event timestamps 
converted to time-since-last event, cyclical time 
features (day-of-week), and positional 
encodings for sequence models. 

 Multimodal fusion: structured features, text 
(product reviews, chat), and image 
embeddings combined via late or cross 
attention. 

4.2 Sequential encoders 

 RNN/GRU/LSTM: Good for per-customer 
purchase sequences when event order matters 
and sequences are moderate in length. 

 Transformer encoders: Scalable to long 
sequences and support self-attention that 
captures modality interactions; application to 
CLV prediction has recently been adopted in 
industrial recipes. Keras 

 Hybrid: short-term LSTM + long-context 
Transformer to capture multi-scale 
dependencies. 

4.3 Output heads: distributional and mixture 
models 
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E-commerce CLV distributions are heavy-tailed and 
zero-inflated (many users never purchase again within 
horizon). We strongly recommend distributional output 
layers rather than point regression: 

 Zero-inflated mixture (ZILN): Mixture of a 
point mass at zero and a log-normal (or 
Gamma) for positive revenue; train by 
maximum likelihood (negative log-likelihood of 
mixture). Proven effective in prior work. arXiv 

 Mixture density networks (MDN): Model CLV 
as a mixture of parametric components (e.g., 
lognormals) with neural mixture weights. 

 Quantile regression heads: Predict multiple 
quantiles (e.g., 10th, 50th, 90th) for calibration. 

 Bayesian last-layer / MC Dropout: 
Uncertainty quantification via approximate 
Bayesian inference (Monte Carlo Dropout), 
useful for risk-sensitive decisioning. arXiv 

4.4 Losses and regularization 

 Negative log-likelihood of chosen distributional 
head (ZILN/MDN). 

 Weighted combination with downstream 
business losses (e.g., expected profit after cost 
of offers), calibration penalties (CRPS), and 
fairness/regularization constraints. 

 Use label smoothing, adversarial noise, and 
time-aware dropout to prevent overfitting to 
historical regimes. 

4.5 Two-stage vs. joint multitask modeling 

 Two-stage: Predict intermediate quantities 
(churn hazard, purchase frequency, average 
order value) and combine via probabilistic 
composition to produce CLV. Classical models 
often adopt this; it offers interpretability. 

 End-to-end: Direct neural regression to CLV 
can exploit end-to-end losses and complex 
features but requires careful calibration. A 
hybrid approach  multitask heads predicting 

churn probability + expected spend  can be 
effective and improves robustness. 

4.6 Example architecture (pseudocode) 

Input: Customer history H_i 

Embeddings: e = 
EmbeddingLayer(categorical_features) 

Sequence encoding: z_seq = 
TransformerEncoder(sequence_features) 

Static encoding: z_static = MLP(static_features) 

Fusion: z = Concatenate([z_seq, z_static, e]) 

Heads: 

  - ProbAliveHead -> p_alive (sigmoid) 

  - SpendHead -> params of ZILN (pi_zero, mu, sigma) 

Loss = -log_likelihood(ZILN | ground_truth) + λ1 * 
calibration_loss + λ2 * regularization 

5. Causal Inference for CLV: Estimands, 
Identification, and Estimation 

Predictive CLV alone often misleads decision-making 
because it does not answer what will happen if we do 
X? To operationalize CLV for interventions (who to 
target, personalized offers), we must estimate causal 
effects. 

5.1 Target estimands 

 Average Treatment Effect on CLV (ATE): 
τ=E[CLVi(1)−CLVi(0)]\tau = 
\mathbb{E}[\mathrm{CLV}_i(1) - 
\mathrm{CLV}_i(0)]τ=E[CLVi(1)−CLVi(0)]. 

 Conditional / Heterogeneous Treatment 
Effect (CATE / ITE): 
τ(x)=E[CLVi(1)−CLVi(0)∣Xi=x]\tau(x) = 
\mathbb{E}[\mathrm{CLV}_i(1) - 
\mathrm{CLV}_i(0) \mid X_i = x]τ(x)=E[CLVi
(1)−CLVi(0)∣Xi=x], where XXX includes high-
dimensional covariates. 

5.2 Identification assumptions 
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 Ignorability (unconfoundedness): 
{CLVi(1),CLVi(0)}⊥Ai∣Xi \{ \mathrm{CLV}_i(1), 
\mathrm{CLV}_i(0) \} \perp A_i \mid X_i{CLVi
(1),CLVi(0)}⊥Ai∣Xi. Plausible when treatment 
assignment is well measured and includes 
campaign, timing, exposure, and selection 
features; otherwise require randomized 
experiments or instruments. 

 Overlap: All customers have nonzero 
probability of receiving each treatment 
conditional on XXX. 

If ignorability is suspect, prioritize randomized 
experiments or utilize instrumental variables or panel 
difference-in-differences designs. 

5.3 Estimation strategies 

5.3.1 Double / Debiased Machine Learning (DML) 

DML decomposes estimation into flexible nuisance 
estimation (propensity, outcome models) using ML and 
orthogonalization to remove first-order bias, producing 
√n-consistent estimates under mild conditions. To 
estimate ATE/CATE for CLV (a continuous, heavy-
tailed outcome), one can use DML with robustification 
(e.g., trimmed propensity scores) to obtain valid 
inference in high-dimensional settings. arXiv 

Practical recipe: 

1. Split data into folds. 

2. Fit ML models for propensity e(X)e(X)e(X) and 
outcome m^(X,A)\hat{m}(X,A)m^(X,A) (here, 
the deep CLV model can serve as 
m^\hat{m}m^). 

3. Form orthogonal scores and solve for 
treatment effect; average across folds. 

5.3.2 Causal forests and generalized random 
forests 

Causal forests estimate heterogeneous treatment 
effects nonparametrically with valid confidence 
intervals and are robust to irrelevant covariates; they 
are suitable when we need individualized effect 

estimates and policy targeting. Use causal forests to 
complement DML when effect heterogeneity is central. 
arXiv 

5.3.3 Representation learning for counterfactuals 
(neural balancing) 

If the feature space is high-dimensional (embeddings, 
sequence encodings), train a neural representation 
that balances treated and control distributions 
(minimizes discrepancy) while preserving predictive 
power for outcomes. Methods like TARNet / Dragonnet 
/ the representation learning framework of Johansson 
et al. can be adapted for CLV; they have been shown 
to outperform classical kernels in many observational 
settings.  

5.3.4 Uplift / Two-model and single-model 
approaches 

Traditional uplift uses two separate models (predict 
outcome under treatment and control), but modern 
best practice uses doubly robust learners (DML) or 
targeted learning approaches combining propensity 
and outcome prediction for improved robustness. 

5.4 Combining deep predictive models with causal 
estimators 

A practical pipeline: 

1. Representation stage: Train a deep encoder 
ϕψ(X)\phi_\psi(X)ϕψ(X) that compresses 
history into a low-dimensional, informative 
state; optionally use a balancing regularizer 
(Wasserstein / MMD) to reduce distribution shift 
across treatments. 

2. Nuisance estimation stage: Fit propensity 
e^(ϕψ(X))\hat{e}(\phi_\psi(X))e^(ϕψ(X)) and 
outcome models 
m^(ϕψ(X),A)\hat{m}(\phi_\psi(X), A)m^(ϕψ
(X),A) using flexible learners (XGBoost, deep 
nets). 

3. Orthogonalization / DML stage: Compute 
orthogonal scores and estimate ATE/CATE 
with sample splitting. 
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4. Heterogeneity discovery: Use causal forest 
on ϕψ(X)\phi_\psi(X)ϕψ(X) or tree-structured 
learners to discover interpretable 
heterogeneity segments. 

5. Policy learning: Solve for a personalized 
treatment policy (cost-sensitive) using regret-
minimization / off-policy evaluation with doubly 
robust estimators. 

This integrated approach returns both (a) distributional 
CLV forecasts and (b) validated causal uplift estimates 
with uncertainty for decisioning. 

6. Evaluation: Metrics, Validation, and 
Experimental Protocols 

Robust evaluation is essential: temporal leakage, 
distribution shift, and censored outcomes are 
pervasive in CLV. 

6.1 Predictive metrics 

 Point metrics: MAE, RMSE (for logged 
positive revenue), MAPE (with caution for 
zeros), Gini / area under Lorenz curve for 
ranking quality. 

 Distributional metrics: CRPS (continuous 
ranked probability score), negative log-
likelihood, calibration plots (reliability 
diagrams), sharpness. 

 Business metrics: expected profit uplift under 
deployment policy, cost-adjusted CLV, and 
percent gain over baseline rules. 

6.2 Causal metrics and validation 

 Policy evaluation: Off-policy evaluation using 
Inverse Probability Weighting (IPW) and 
Doubly Robust (DR) estimators to estimate 
deployed policy value. 

 Uplift evaluation: Qini curves and uplift AUC 
for ranking uplift capacity. 

 Confidence intervals and coverage: 
Evaluate empirical coverage of estimated ITE 

intervals via held-out randomized subsets or 
synthetic experiments. 

6.3 Cross-validation and backtesting 

 Temporal cross-validation (rolling / 
expanding window): Ensure train-test splits 
respect time ordering to emulate deployment. 

 Bootstrapped backtests: Assess variability of 
performance under resampling. 

 Censoring and survival: If customer lifetimes 
are censored, integrate survival models or 
inverse probability censoring weights when 
computing horizon CLV. 

6.4 A/B testing and hybrid evaluation 

For causal claims, randomized experiments remain the 
gold standard; use experiments to validate model uplift 
estimates and calibrate the causal pipeline. When 
experiments are unavailable, use sensitivity analyses 
(Rosenbaum bounds) to quantify robustness to 
unobserved confounding. 

7. Implementation, Productionization, and 
Governance 

7.1 System architecture and infrastructure 

 Feature store for preprocessing and serving 
consistent features across training and 
inference. 

 Online / offline model parity: maintain 
identical preprocessing in offline and online 
pipelines. 

 Serving constraints: real-time scoring vs 
batched scoring tradeoffs; sequence encoding 
may be precomputed to reduce latency. 

 Logging & audit trails: store inputs, model 
outputs, and decision logs for post-hoc analysis 
and regulatory requirements. 

7.2 Operational considerations 
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 Cold start: combine cohort-level priors 
(population distribution) and rapid fine-tuning 
for new customers. 

 Retraining cadence: schedule periodic 
retraining and monitoring for distribution drift; 
consider continual learning with conservative 
updates. 

 Experimentation: allocate holdout treatment 
groups for randomized validations and shadow 
deployments. 

7.3 Interpretability and human oversight 

 Use SHAP / integrated gradients for feature 
attribution on predicted CLV; complement with 
causal forest segment explanations for uplift. 

 Provide decision makers with both predictive 
CLV and causal uplift (with CIs), and simple, 
actionable decision rules (e.g., treat if 
Δ^i>δ\widehat{\Delta}_i > \deltaΔi>δ and 
CLV^i\widehat{\mathrm{CLV}}_iCLVi under 
budget constraints). 

7.4 Data quality, privacy, and security 

 Ensure robust fraud detection and data 
integrity (anomalous transactions, bot activity) 
as these distort CLV estimates; secure data 
exchange and governance are critical for 
cross-system feature sharing. User-provided 
works highlight the importance of secure, 
cloud-based analytics and AI for fraud 
detection and secure pipelines in large 
systems. (See Fatunmbi; Samuel). (User-
provided references included in final 
bibliography.) 

8. Example Experimental Protocol (Reproducible) 

1. Datasets: public or proprietary e-commerce 
transaction logs with customer IDs, 
timestamps, products, session features, 
marketing exposures. Partition data 
temporally: train on [T0, T1], validate on [T1+1, 

T2], test on [T2+1, T3] with multiple rolling 
folds. 

2. Baselines: BG/NBD + Gamma-Gamma 
monetary model (classical), XGBoost two-
stage model, deep probabilistic model (ZILN), 
perCLTV / ODMN (industrial baselines).  

3. Predictive models: Transformer encoder + 
ZILN head (primary), LSTM baseline, two-
stage architecture with churn + spend heads. 

4. Causal estimators: DML using deep outcome 
& propensity, causal forest on learned 
representation, and representation-balanced 
Dragonnet variant for counterfactuals.  

5. Metrics: MAE, CRPS, calibration, uplift Qini, 
expected policy profit (DR estimator), interval 
coverage. 

6. Ablations: (a) distributional head vs MSE, (b) 
representation balancing vs none, (c) DML vs 
two-model uplift. 

7. Reporting: include fairness audits, calibration 
plots, policy confusion matrix (who is targeted 
vs who should be). 

9. Limitations, Risks, and Ethical Considerations 

 Confounding and selection bias: 
Observational causal estimates rely on 
unconfoundedness; if violated, estimates may 
mislead. Use experiments or IV/DID designs 
when possible. 

 Distribution shift: Behavior and economics 
change; retrain and conduct drift detection. 

 Privacy: CLV relies on personal data; comply 
with regulations (GDPR, CCPA) and minimize 
data. Use federated analytics where 
appropriate. 

 Fairness / discrimination: Personalized 
offers may inadvertently discriminate; audit 
policies and include fairness constraints in 
optimization. 
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 Fraud and poisoning: Fraudulent 
transactions or adversarial manipulation can 
bias models; integrate fraud detection and data 
quality controls. User-provided studies 
emphasize deploying robust fraud detection 
and secure cloud analytics to mitigate such 
risks (Samuel). (See References.) 

10. Conclusion and Roadmap 

We presented an end-to-end blueprint for combining 
deep learning and causal inference to deliver both 
accurate predictive CLV models and valid causal effect 
estimates for e-commerce decisioning. The central 
idea is to use expressive deep encoders and 
distributional heads for prediction, and to place these 
learned components within rigorous causal estimation 
frameworks (DML, causal forests, balanced 
representations) so that treatment policies (e.g., who 
receives coupons) are guided by estimated uplift with 
quantifiable uncertainty. This hybrid approach enables 
prescriptive decisions that are statistically defensible 
and operationally scalable. 

Key research and deployment priorities include: (1) 
improving representation balancing for disentangling 
treatment selection from outcome mechanisms; (2) 
scaling distributional deep models to billion-user 
regimes (industrial solutions show promising patterns); 
(3) standardizing uplift policy evaluation frameworks in 
production; and (4) building robust governance to 
mitigate fairness, privacy, and fraud risks. 

References 

1. Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). 
“Counting Your Customers” the Easy Way: An 
Alternative to the Pareto/NBD Model. Marketing 
Science, 24(2), 275–284.  

2. Wang, X., Liu, T., & Miao, J. (2019). A Deep 
Probabilistic Model for Customer Lifetime Value 
Prediction. arXiv:1912.07753.  

3. Li, K., Shao, G., Yang, N., Fang, X., & Song, Y. 
(2022). Billion-user Customer Lifetime Value 

Prediction: An Industrial-scale Solution from 
Kuaishou. Proceedings of CIKM 2022.  

4. Fatunmbi, T. O. (2022). Deep learning, artificial 
intelligence, and machine learning in healthcare: 
Applications and future directions. World Journal of 
Advanced Research and Reviews, 15(2), 1–12. 
https://doi.org/10.30574/wjarr.2022.15.2.0359 

5. Zhao, S., Wu, R., Tao, J., Qu, M., Zhao, M., Fan, 
C., & Zhao, H. (2023). perCLTV: A General System 
for Personalized Customer Lifetime Value 
Prediction in Online Games. ACM Transactions on 
Information Systems, 41(1).  

6. Cao, X., Xu, Y., & Yang, X. (2024). Customer 
Lifetime Value Prediction with Uncertainty 
Estimation Using Monte Carlo Dropout. 
arXiv:2411.15944.  

7. Fatunmbi, T. O. (2024). Advanced frameworks for 
fraud detection leveraging quantum machine 
learning and data science in fintech ecosystems. 
World Journal of Advanced Engineering 
Technology and Sciences, 12(01), 495–513. 
https://doi.org/10.30574/wjaets.2024.12.1.0057 

8. Wager, S., & Athey, S. (2018). Estimation and 
Inference of Heterogeneous Treatment Effects 
using Random Forests. (Causal forests)  arXiv / 
JASA related work.  

9. Chernozhukov, V., Chetverikov, D., Demirer, M., 
Duflo, E., Hansen, C., Newey, W., & Robins, J. 
(2017/2018). Double/Debiased Machine Learning 
for Treatment and Structural Parameters. arXiv / 
NBER.  

10. Johansson, F. D., Shalit, U., & Sontag, D. (2016). 
Learning Representations for Counterfactual 
Inference. Proceedings of ICML 2016.  

11. OptDist: Weng, Y., Tang, X., Xu, Z., et al. (2024). 
OptDist: Learning Optimal Distribution for 
Customer Lifetime Value Prediction. 
arXiv:2408.08585.  



 Page 12 of 12 
 

 

 
 
Global Journal of Intelligent Technologies                                                                                       (Volume III, Issue I, 2025) 

12. Additional survey and application works on CLV 
and deep learning (selected): Sun, Y. et al. (2023)  
review on CLV with ML; perCLTV and ODMN 
industrial publications; various arXiv and 
conference papers cited inline.  

13. Pearl, J. (2009). Causality: Models, Reasoning and 
Inference (2nd ed.). Cambridge University Press.  

14. Rubin, D. B. (1974). Estimating Causal Effects of 
Treatments in Randomized and Nonrandomized 
Studies. Journal of Educational Psychology, 66(5), 
688–701.  

15. Samuel, A. J. (2022). AI and machine learning for 
secure data exchange in decentralized energy 
markets on the cloud. World Journal of Advanced 
Research and Reviews, 16(2), 1269–1287. 
https://doi.org/10.30574/wjarr.2022.16.2.1282 

16. Samuel, A. J. (2023). Enhancing financial fraud 
detection with AI and cloud-based big data 
analytics: Security implications. World Journal of 
Advanced Engineering Technology and Sciences, 
9(02), 417–434. 
https://doi.org/10.30574/wjaets.2023.9.2.0208 

 


