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Abstract 
Genomic data characterized by extreme 
dimensionality, complex structure, and subtle signal-
to-noise ratios presents formidable computational and 
statistical challenges for precision medicine. Quantum 
machine learning (QML) and hybrid quantum–classical 
AI systems offer novel computational paradigms that 
may accelerate or improve aspects of genomic 
analysis: from sequence alignment and assembly to 
variant calling, haplotype phasing, population 
genetics, and multi-omics integration. This article 
develops a comprehensive, scholarly account of QML 
applied to genomics. We (i) review the theoretical 
foundations of quantum algorithms and QML models 
relevant to genomics (quantum kernels/feature maps, 
variational quantum circuits, quantum annealing); (ii) 
formalize problem mappings for core genomics tasks 
and provide explicit encodings (k-mer embeddings, 
binary/angle encodings, QUBO formulations); (iii) 
propose hybrid AI system architectures combining 
classical deep learning with quantum subroutines for 
discrete and high-dimensional subproblems; (iv) 
delineate experimental protocols, benchmarking 
strategies, and evaluation metrics that fairly compare 
QML to classical baselines; and (v) critically assess 
practical limitations (noise, scalability, data-encoding 
overhead), ethical and security implications, and a 
realistic roadmap for translational research. We 
ground our discussion with recent empirical findings 
and systematic reviews that evaluate QML’s promise 
and limits in biological data domains. While existing 
quantum hardware is in the NISQ (noisy intermediate-
scale quantum) era, hybrid approaches where 
quantum processors solve discrete combinatorial or 
kernel-evaluation subproblems inside largely classical 

pipelines present a pragmatic path toward early utility 
in genomics. We conclude with concrete 
recommendations for researchers and practitioners 
seeking to responsibly explore QML for precision 
medicine.  
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1. Introduction 

The past two decades have witnessed an explosion of 
genomic data: whole-genome and whole-exome 
sequencing, large cohort studies, single-cell genomics, 
and multi-omics consortia create datasets of 
increasing size and complexity. Classical 
computational genomics has advanced rapidly 
leveraging algorithmic innovations, high-performance 
computing, and deep learning but fundamental 
computational bottlenecks remain. Tasks such as de 
novo assembly, haplotype phasing, exhaustive 
pairwise-similarity searches, and combinatorial 
optimization for pan-genome graph construction can 
be computationally intensive and, in some 
formulations, asymptotically intractable. Quantum 
computing proposes different asymptotic scaling for 
certain problems and provides new algorithmic 
primitives (superposition, entanglement, amplitude 
amplification) that can be exploited by hybrid 
algorithms. The central question that motivates this 
paper is straightforward but multifaceted: Can 
quantum machine learning (QML) and hybrid 
quantum–classical systems materially improve 
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genomic data analysis and thereby accelerate 
precision medicine? 

The literature provides both optimism and caution. 
Landmark QML demonstrations such as quantum-
enhanced feature spaces (quantum kernel methods) 
and variational quantum classifiers have shown proof-
of-concept advantages on tailored problems and small 
datasets, exploiting a quantum state space as an 
exponentially large feature map that may be 
inaccessible classically. At the same time, systematic 
reviews and theoretical analyses highlight important 
limits, including embedding overheads, noise 
susceptibility, and that realistic quantum speedups 
often require careful problem structure and hardware 
advances.  

This article maps the current landscape onto concrete 
genomic use cases, details how to encode biological 
data for quantum processing, proposes hybrid 
architectures that focus quantum resources where 
they are most likely to help (discrete optimization, 
kernel evaluations, sampling-heavy subroutines), and 
articulates rigorous experimental protocols for fair 
benchmarking. We emphasize practical translational 
pathways that account for the current NISQ ecosystem 
while remaining attentive to fault-tolerant futures. 

Structure of the paper: Section 2 reviews genomics 
problem classes and computational challenges. 
Section 3 introduces quantum computing and QML 
primitives. Section 4 presents mappings of genomics 
tasks to quantum/hybrid formulations and gives 
algorithmic blueprints. Section 5 proposes hybrid 
system architectures and training/deployment 
patterns. Section 6 lays out experimental design and 
benchmarking strategies. Section 7 discusses 
practical limitations, security, and ethical 
considerations. Section 8 concludes with a roadmap 
for research and translation. 

2. Genomic Data: Tasks, Properties, and 
Computational Challenges 

2.1 Typical genomic data modalities and tasks 

Genomic and related biomedical datasets include, but 
are not limited to: 

 Short-read and long-read sequencing reads 
(Illumina, PacBio, Oxford Nanopore) used for 
assembly and variant discovery. 

 Variant callsets (SNPs, indels, structural 
variants) and genotypes across cohorts. 

 Haplotype and phasing data to reconstruct 
chromosome-scale allelic configurations. 

 Expression and epigenomic profiles from 
bulk and single-cell assays. 

 Population genetic summaries (linkage 
disequilibrium matrices, coalescent trees). 

 Sequence graphs / pangenomes 
representing structural variation across 
populations. 

Key computational tasks: sequence alignment, de 
novo assembly (graph construction & path finding), 
variant calling and genotyping, haplotype phasing, 
read error correction, motif finding, similarity search 
(e.g., k-mer matching, nearest-neighbor queries), 
population structure inference, and combinatorial 
optimization for experimental design (e.g., optimal 
primer design), among others. 

2.2 Structural characteristics impinging algorithm 
design 

Two features distinguish genomic data from many 
standard machine-learning datasets: 

1. Extreme dimensionality with structured 
sparsity. Genomes involve sequences over 
alphabet Σ={A,C,G,T} yielding combinatorial 
explosion of k-mers; yet biological variation is 
sparse in meaningful dimensions (most 
positions conserved). 

2. Multi-scale structure. Biological signals 
interact across nucleotides, motifs, genes, and 
chromosomal scales; this favors hierarchical 
and graph-based models. 
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3. Discrete combinatorial optimization cores. 
Problems such as haplotype phasing, 
assembly scaffolding, and read-ordering often 
reduce to NP-hard formulations (e.g., traveling-
salesman-like ordering, minimum-error 
correction). 

4. Noise and error models. Sequencing 
technologies introduce distinct error signatures 
(indel-heavy vs substitution errors) that affect 
algorithmic choices. 

2.3 Computational bottlenecks and where quantum 
methods might help 

Classical genomics benefits from algorithmic 
advances (FM-indexing, Burrows-Wheeler transform, 
succinct de Bruijn graphs) and scalability engineering. 
Yet practical bottlenecks remain: 

 All-pairs similarity (e.g., large k-mer 
comparisons) scales poorly with cohort size. 

 Combinatorial optimization (e.g., optimal set 
cover for annotation, haplotype assembly) can 
be resource-intensive. 

 Sampling from complex posterior 
distributions (e.g., coalescent-based 
inference) may require heavy MCMC runs. 

Quantum algorithms may eventually offer benefits in 
two broad ways: (i) quantum-enhanced feature 
transformations (quantum kernels) that can separate 
classes in high-dimensional quantum state spaces 
more effectively than classical kernels for certain data 
encodings; and (ii) quantum solvers for combinatorial 
optimization (quantum annealers, QAOA) that can 
serve as accelerators for discrete subproblems 
embedded within larger classical pipelines. However, 
gain is problem-dependent and must be empirically 
and theoretically validated.  

3. Quantum Computing and Quantum Machine 
Learning: Principles and Primitives 

This section provides a compact primer necessary to 
understand QML applications to genomics. 

3.1 Quantum computation basics (brief) 

A quantum bit (qubit) is a two-level quantum system 
represented as a normalized superposition 
∣ψ =α∣0 +β∣1 |ψ  = α|0  + β|1 ∣ψ =α∣0 +β∣1 . 
Quantum computation manipulates qubits by unitary 
gates and extracts classical outcomes via projective 
measurement. Key resources include superposition 
(representing 2n2^n2n amplitudes on nnn qubits), 
entanglement (non-classical correlations), and 
interference. 

Current devices lie in the NISQ regime: dozens–low 
hundreds of noisy qubits, limited coherence times, 
gate errors, and constrained qubit connectivity. This 
strongly motivates hybrid algorithms that use short-
depth quantum circuits inside classical workflows. 

3.2 QML primitives relevant to genomics 

3.2.1 Quantum feature maps and quantum kernels 

A foundational idea in several QML approaches is to 
map classical data x∈Rdx\in\mathbb{R}^dx∈Rd to 
quantum states ∣ϕ(x) |ϕ(x) ∣ϕ(x)  using 
parameterized circuits (feature maps). The overlap 
kernel K(x,x′)=∣ ϕ(x)∣ϕ(x′) ∣2K(x,x') = 
| ϕ(x)|ϕ(x') |^2K(x,x′)=∣ ϕ(x)∣ϕ(x′) ∣2 can serve as 
the inner product in the induced (possibly exponentially 
large) quantum feature space. Havlíček et al. (2019) 
experimentally showcased that supervised learning 
using quantum feature maps can construct classifiers 
where the kernel is efficiently accessible on quantum 
hardware even when classical evaluation is hard, 
presenting a possible route to quantum advantage in 
specific learning problems.  

3.2.2 Variational Quantum Circuits (VQCs) / 
Parameterized Quantum Circuits (PQCs) 

VQCs are parameterized quantum circuits trained via 
a classical optimizer to minimize task loss (e.g., 
classification error). They are the defacto NISQ 
approach for supervised learning and generative 
modeling; the circuit depth, ansatz design, and 
parameterization affect expressivity and trainability. 
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Hybrid training uses classical gradient estimation 
(finite differences or parameter-shift rules). 

3.2.3 Quantum annealing and QUBO encodings 

Quantum annealers (e.g., D-Wave) find low-energy 
states of Ising Hamiltonians, solving Quadratic 
Unconstrained Binary Optimization (QUBO) problems. 
Many combinatorial genomics tasks can be cast as 
QUBOs read ordering, optimal primer selection, small-
scale assembly subproblems and quantum annealers 
have been applied to classification and combinatorial 
instances in bioinformatics.  

3.2.4 Sampling and amplitude estimation 
subroutines 

Quantum amplitude estimation and sampling may in 
principle accelerate Monte Carlo–type computations, 
relevant to Bayesian posterior estimation in population 
genetics. However, practical use requires careful 
mapping and often fault-tolerant hardware. 

4. Mapping Genomic Tasks to Quantum and Hybrid 
Formulations 

We now describe concrete problem encodings and 
hybrid algorithmic blueprints for core genomic tasks. 

4.1 Sequence comparison and similarity search 

Problem. Given a query sequence and a database of 
sequences (or k-mers), find nearest neighbors or 
matches. 

Classical bottleneck. All-pairs comparisons scale as 
O(NM)O(NM)O(NM) in naive designs; but indexing 
helps. 

Quantum approach. Two promising directions: 

1. Quantum-enhanced kernel classification: 
encode k-mer frequency vectors or 
compressed embeddings into quantum feature 
maps ∣ϕ(x) |ϕ(x) ∣ϕ(x)  and compute 
quantum kernel matrices used by kernel SVMs 
or kernel PCA. For small-sample, high-
dimensional settings (e.g., rare variant 

classification), quantum kernels can provide 
richer separations.  

2. Grover-style amplitude amplification for 
search: theoretical quadratic speedup in 
unstructured search; however, practical 
speedup for genomics databases is limited by 
data-loading (state preparation) costs and 
oracle construction overheads. Realistic 
assessments show that Grover's algorithm 
rarely provides end-to-end gains unless data 
can be prepared quantum-efficiently.  

Practical hybrid pattern. Use classical preprocessing 
(hashing, locality-sensitive hashing) to reduce 
candidate sets, then apply quantum kernel methods to 
classify or refine matches on the reduced set. 

4.2 De novo assembly and read ordering 

Problem. Reconstruct genome from reads by finding 
an ordering/path that maximizes overlap consistency. 

Classical formulation. Graph assembly problems 
reduce to Hamiltonian path / TSP-like formulations 
over overlap graphs. 

Quantum formulation. Map the assembly 
subproblem to a QUBO instance: nodes represent 
reads or contigs; binary variables encode ordering or 
selection; overlap scores become edge weights; 
constraints (no cycles, coverage) are encoded as 
penalty terms. Quantum annealers (or QAOA on gate-
based devices) can then search for low-energy 
assignments that correspond to plausible assemblies. 
Industry white-papers and proof-of-concepts have 
explored TSP-style encodings for read ordering and 
assembly optimizations.  

Practical caveats. Read counts in modern datasets 
are enormous (millions), so direct QUBO on entire 
assemblies is infeasible. Decomposition strategies 
divide and conquer (local assembly regions), 
hierarchical scaffolding, and classical pre-filtering are 
necessary to make quantum subproblems tractable. 

4.3 Variant calling and genotyping 
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Problem. From read pileups, infer genotype 
probabilities and call variants. 

Potential quantum uses. 

 Quantum-accelerated probabilistic 
inference. Variational QML architectures may 
assist in learning complex likelihood surrogates 
(e.g., modeling indel error distributions) in 
small-data regimes. 

 Quantum kernels for variant classification. 
Use QML to classify candidate variant calls 
(true variant vs sequencing artifact) in difficult 
contexts (low allele fraction, noisy long reads) 
where classical features fail. 

Recent works demonstrate that QML can provide 
performance improvements on classification tasks in 
biology when sample size is small and feature 
dimension is large common in rare variant contexts. 
However, rigorous benchmarking against classical 
ensembles is required.  

4.4 Haplotype phasing and combinatorial 
assembly 

Haplotype phasing (reconstructing maternal/paternal 
haplotypes) reduces to combinatorial optimization 
(minimum error correction). QUBO encodings and 
annealing have been proposed as potential 
accelerators for moderately sized phasing blocks. 
Hybrid strategies delegate local phasing blocks to 
quantum annealers while classical methods handle 
long-range scaffolding. 

4.5 Population genetics and clustering 

Quantum clustering algorithms and QML classifiers 
may be applied to detect population structure, 
admixture, or subtle differentiation. The promise is that 
quantum kernels might reveal structure masked in 
classical feature spaces, aiding detection of cryptic 
population substructure that impacts disease 
association studies. However, recent reviews caution 
that claims of advantage are sensitive to encoding 

choices and data preprocessing; theoretical speedups 
must be weighed against practical overheads.  

4.6 Multi-omics integration and representation 
learning 

Integrating genomics with transcriptomics, 
epigenomics, and proteomics is central to precision 
medicine. Variational quantum circuits can be used as 
feature extractors (quantum encoders) in hybrid 
autoencoder frameworks to learn compact cross-
modal representations. These representation learning 
strategies can feed into downstream tasks such as 
patient stratification or drug response prediction. 

5. Hybrid AI Architectures and Algorithmic 
Blueprints 

Given current hardware realities, hybrid quantum–
classical architectures are the pragmatic path. Below 
we give concrete blueprints, training strategies, and 
engineering patterns. 

5.1 Where to place quantum modules in classical 
pipelines 

Identify compute-intensive or combinatorially hard 
subroutines: 

 Discrete combinatorial kernels: assembly 
subproblems, primer design, haplotype block 
phasing → QUBO / annealing. 

 Kernel matrix computations and feature 
maps: small-sample high-dimensional 
classification tasks → quantum kernel 
evaluations. 

 Sampling-heavy inference: where amplitude 
estimation may eventually speed Monte Carlo, 
but current NISQ hardware is limited. 

The architecture follows a classical orchestration 
layer that performs data ingestion, preprocessing, and 
orchestration; a quantum execution layer for 
targeted quantum subroutines; and a postprocessing 
layer for classical refinement and aggregation. 

5.2 Two canonical hybrid patterns 
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5.2.1 Quantum-assisted classifier (QAC) 

1. Preprocess genomic data to produce feature 
vectors xxx (k-mer counts, embeddings). 

2. Compute quantum kernel entries 
K(xi,xj)K(x_i,x_j)K(xi,xj) on a QPU using a 
chosen feature map circuit. 

3. Train a classical kernel SVM or kernel ridge 
regressor using the quantum kernel. 

4. Optionally retrain or calibrate with classical 
cross-validation. 

This pattern is effective when training dataset size nnn 
is moderate (hundreds–thousands) and features are 
high-dimensional. 

5.2.2 Quantum-accelerated combinatorial 
optimizer (QACO) 

1. Formulate the discrete subproblem as QUBO: 
minimize x⊤Qx+q⊤xx^\top Q x + q^\top 
xx⊤Qx+q⊤x subject to constraints encoded via 
penalties. 

2. Use quantum annealer or QAOA to sample 
low-energy solutions. 

3. Validate and refine solutions classically (local 
search, greedy heuristics). 

4. Integrate into larger pipeline (e.g., assembly 
refinement). 

This pattern is applicable to constrained combinatorial 
kernels embedded within classical workflows. 

5.3 Training and optimization strategies 

 Batched hybrid training: avoid calling the 
QPU in every gradient step; cache kernel 
matrices or use mini-batch estimators to 
reduce quantum calls. 

 Surrogate differentiable approximations: 
where end-to-end differentiability is desired, 
replace quantum subroutines with classical 
differentiable surrogates during gradient 

updates and swap in quantum modules for 
evaluation. 

 Ensemble and consensus: aggregate 
multiple quantum solver runs (to smooth 
stochasticity) and combine with classical 
heuristics for robust solutions. 

5.4 Hardware and software ecosystem 

Leverage robust SDKs and hardware stacks (Qiskit, 
Cirq, Pennylane) and classical accelerators 
(GPUs/TPUs). Match problem size to device topology 
(qubit count, connectivity) and plan embeddings 
(minor-embedding on annealers, logical-to-physical 
qubit mapping) carefully to minimize chain breaks and 
penalty tuning overhead. 

6. Experimental Protocols, Benchmarks, and 
Evaluation Metrics 

Rigorous evaluation is critical to avoid spurious claims 
of quantum advantage. We propose best practices. 

6.1 Problem instance design and dataset curation 

 Taxonomy of instances: small-sample high-
dimension vs large-sample low-dimension; 
combinatorial block sizes for assembly 
subproblems. 

 Public and synthetic datasets: use publicly 
available genomic datasets (1000 Genomes, 
ENA, NIH SRA) plus synthetic instances with 
ground truth to test assembly and phasing. 

 Preprocessing transparency: document 
encoding choices (angle vs amplitude 
encoding, k-mer size), normalization, and 
dimensionality reduction steps. 

6.2 Baselines and controls 

 Compare QML methods against strong 
classical baselines: kernel SVM with classical 
kernels (RBF, polynomial), gradient-boosted 
trees, convolutional/recurrent neural networks, 
and specialized genomics tools (BWA, GATK, 
SPAdes). 
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 Use classical acceleration techniques 
(approximate kernels, random Fourier 
features) as baselines for fair assessment. 

6.3 Evaluation metrics 

 Predictive tasks: accuracy, AUC, 
precision/recall, calibration. 

 Combinatorial tasks: objective value gap, 
solution feasibility, running time (wall-clock, 
including embedding overhead), and 
energy/stability. 

 Robustness: sensitivity to noise, error models 
(simulate sequencing error profiles). 

 Resource accounting: total QPU time, 
number of calls, classical compute time; 
include data-loading costs. 

6.4 Statistical testing and reproducibility 

 Use repeated randomized experiments, 
bootstrapping, and non-parametric tests to 
evaluate significance. 

 Publish code, parameter files, and raw instance 
definitions (where privacy allows) to enable 
replication. 

 When using cloud quantum services, log 
device calibration metadata (dates, qubit 
quality) to contextualize results. 

6.5 Interpreting performance 

Even if raw wall-clock time is larger on QPU solutions, 
identify regimes where quality per unit resource or 
best-in-class solution quality is improved (e.g., 
combinatorial solution quality under tight time budgets 
for certain instances). Carefully avoid overstating 
asymptotic or general advantage. 

7. Practical Limitations, Security, and Ethical 
Considerations 

7.1 NISQ hardware limitations and noise 

NISQ devices are noisy: gate infidelity and 
decoherence limit circuit depth and practical problem 
sizes. This constrains VQC expressivity and increases 
circuit sampling requirements for accurate kernel 
estimation. Error mitigation strategies (zero-noise 
extrapolation, readout error correction) are important 
but add overhead. Nature 

7.2 Data encoding overheads 

Encoding classical genomic data into quantum states 
can be expensive (amplitude encoding requires 
normalization and multi-qubit gates). For many 
genomics datasets, the cost of state preparation 
outweighs benefits unless encoding can be performed 
efficiently or the quantum module operates on a 
compressed representation (e.g., sparse k-mer 
embeddings). 

7.3 Security, privacy, and cloud/native concerns 

Genomic data are highly sensitive. Quantum cloud 
services raise privacy questions: data may be 
uploaded to remote QPU backends. Homomorphic 
encryption and secure multi-party computation remain 
immature for quantum pipelines. Practitioners should 
apply privacy-by-design and possibly federated 
patterns to avoid raw data transfer. The cloud-native 
security perspective is critical: orchestration, 
provenance, and logging must satisfy regulatory 
requirements. (See Samuel, 2021; Samuel, 2022 on 
cloud and secure AI patterns.) PMC+1 

7.4 Algorithmic fairness and biological bias 

Training data for genomics often reflect population 
biases (e.g., European ancestry overrepresentation). 
QML or hybrid systems trained on biased cohorts risk 
propagating or amplifying inequities in precision 
medicine. Careful dataset curation, fairness audits, 
and subgroup analyses are essential. 

7.5 Energy consumption and environmental 
considerations 

Quantum hardware consumes cryogenic cooling and 
specialized infrastructure; the energy-cost tradeoffs 
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compared to large-scale classical compute must be 
considered in appraisal of sustainability. 

8. Roadmap and Recommendations for the Field 

Given both promise and practical constraints, we 
propose the following roadmap for responsible 
research and translation. 

1. Focus on small-to-moderate instance 
regimes where quantum feature maps or 
annealing can add value (e.g., rare variant 
classification, local assembly blocks). 
Benchmark rigorously against tuned classical 
baselines.  

2. Invest in encoding research: design 
biologically meaningful embeddings (k-mer 
hashing, graph embeddings) that map 
efficiently into quantum circuits or compressed 
quantum states. 

3. Adopt hybrid engineering patterns: keep 
quantum modules modular and replaceable; 
use classical surrogates for training where 
required; minimize QPU calls via caching and 
surrogate approximations. 

4. Promote open benchmarking datasets and 
instance repositories for quantum genomics 
(synthetic ground-truth instances and privacy-
preserving real data variants). 

5. Advance privacy and security practices: 
integrate federated learning, secure enclaves, 
and explicit governance frameworks before 
sensitive genomic data is processed on remote 
QPUs. (See Samuel 2021/2022 for cloud 
security perspectives.)  

6. Interdisciplinary collaborations: bring 
together quantum algorithm designers, 
computational biologists, clinicians, and 
ethicists to co-design problem formulations that 
are meaningful biologically and feasible 
technically. 

7. Transparent reporting: publish device 
metadata, embedding details, and all 
preprocessing to ensure reproducibility and 
careful interpretation of any claimed quantum 
benefits. 

9. Conclusion 

Quantum machine learning and hybrid quantum–
classical AI systems introduce interesting new 
primitives quantum feature maps, variational ansätze, 
and quantum annealing solvers that could assist 
specific subproblems in genomic data analysis. At 
present, practical contributions will most likely be 
incremental and specialized, adding value in small-
sample, high-dimensional settings or where discrete 
combinatorial cores exist and can be decomposed into 
tractable QUBO instances. True transformative 
advantages across genomics will depend on advances 
in error-corrected quantum hardware, improved 
encoding strategies, and careful hybrid engineering. 

This manuscript has articulated mappings from 
genomics problems to quantum formulations, 
proposed hybrid architecture and engineering 
patterns, and emphasized rigorous experimental 
protocols and ethical guardrails. We recommend that 
the genomics and quantum communities pursue 
focused, reproducible pilot studies on well-scoped 
tasks (local assembly, rare variant classification, 
phasing blocks) while advancing cross-disciplinary 
collaboration to ensure results are biologically 
meaningful, secure, and equitable. 
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